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Chapter 1

Introduction

Many computational problems need arithmetic operations in polynomial finite
rings of Z/nZ where n is an integer (n > 1). Integer factorizations, primality
testing are for instance such applications. To solve them, programmers use
general symbolic mathematical softwares or write specific programs (most of
the time in CJ]).

On the first hand, symbolic mathematical softwares (Maple[], Mathemat-
ica[],...) handle with difficulty computations in finite fields. In the worst cases,
such programs perform computations with rationals before finally reducing the
objects modulo the characteristic n, in the best cases, such reductions are per-
forms but extensions of a finite ring cannot be implemented. In any cases,
applications written with such softwares are ten to hundred times slower than
an “ad hoc” implementation in C. On the other hand, optimized C libraries
(CESAR, Lidia) deal only with one side of finite fields, mainly Z/nZ.

We hardly believe we can keep the efficiency of these C libraries while working
in any polynomial extension of Z/nZ. We designed the ZEN library to perform
efficient arithmetic operations in these sets.

Via oriented object concepts programmed in C, you can work in the same
way not only in any polynomial extension of Z/nZ, but also in any polynomial
extension of another finite ring even if n is not a prime or even if the polynomial
which defines an extension is not irreducible. The current finite ring is an argu-
ment of any procedure of this library. So, once a program is written for a given
finite field, for instance Z /27, only few minor changes will be necessary to make
it work in other finite fields, for instance Z/5Z, 7./18446744073709551629Z,
(Z)2Z)[t]] (#*° + 3 + 1), ((Z/1753Z)[t](t* + T7))[u]/(u® + t),...or even in rings,
for instance in Z/1024Z, (Z/2Z)[t]/ (t'° + 1),...In this later case, the functions
of ZEN still works but exceptions are raised if inverses cannot be computed.

To combine simplicity and efficiency, the procedures needed to handle ele-
ments, polynomials, matrices,...are set at the running time while initializing
the current ring because the computer structure of these objects depends on this
ring. So, even if the syntax of our functions is always the same, the procedures
dynamically called are functions of the ring.

Two other original features of ZEN are the “precomputation” and “clone”
concepts. In practice, it well known we can improve some algorithms at the
expense of precomputations. Nevertheless, precomputations can take time! In
ZEN, no precomputation is done by default but the user can perform some to

7



8 CHAPTER 1. INTRODUCTION

speed up multiplications, exponentiations,.... To that end, ZEN provides a
procedure whose arguments are a ring and a flag to control the way precompu-
tations are added to the ring.

It is well known too you can increase performances by changing the way
you represent elements of a finite fields. A ring is defined by default by its
polynomial basis in ZEN. But, some operations can be significantly speeded
up if you change its representation. For instance, if you are working in a finite
field, you can look for a generator and then working in the set of indexes. In
ZEN, these representations are called “clones” and you can compute clones of
any rings. To that end, ZEN provides a procedure whose arguments are a ring
and a flag to control which clone you want to compute. Obviously, you can then
add precomputations to a clone.

This library can be used at two levels.

1. For a current usage, the functions of the library can be used to perform
operations on elements, polynomials, matrices, series and elliptic curves
over every polynomial extension over Z/nZ as described previously. Here,
you only have to include zen.h and use the types and the functions of ZEN
in your C sources and link your object files with the library libzen.a. These
functionalities are described in this manual.

2. For advanced users who really need to gain more efficiency, it is possible
to replace procedure calls by macros in their own functions. But, such
users have to know the internal data structures of the library and to write
specific functions for each structure if they still want to handle any finite
ring. These users are then sure that their applications are not penalized
by inopportune procedure calls.

Parts of this library was developped during the thesis of the authors [1, 4].



Chapter 2
Beginning with ZEN

We here suppose the reader familiar with the simple notions of algebra such
as set, group, ring, field, equivalence relations, equivalence class, etc... The
purpose of this section is to recall the construction of a finite field, and to make
the parallel with the library functions. The detailed definitions of the notions
used in this section can be found in any first degree algebra course.

2.1 Modular rings

The basis of every construction of a finite field is a prime field Z/ P with p a
prime integer. This field is the set of integers modulo p. More generally, for all
integer n, the set of integers modulo n is a finite ring.

In C language, mathematical objects are represented by types. The ZEN
library therefore defines some types corresponding to the mathematical ob-
jects. THe first of these types is the ZENRing one which stands for a ring.
In order to build a C representation R of the finite ring R = Z/,,7, we need
first to declare the variable ZENRing R; and then to build it using a C rep-
resentation of n. As ZEN is based upon BigNum, we use this representation
for integers. Hence, we will need a couple BigNum n; BigNumLength nl; to
represent n. We will describe more precisely what a BigNum is later, but
for the moment, we can use the following function to set n to the value n:
ZBNReadFromString(&n,&nl,"1234567",10). This makes the couple (n,nl) rep-
resent n = 1234567 in base 10. Now we can build a representation of R =
Z/12345677, using the intended function of ZEN: ZENBaseRingAlloc(R,n,nl).

Once the ring initialized, one can use the mathematical objects defined on it,
using the same type of programmation. For instance an element will be declared
as a ZENEI E;, and allocated using ZENEItAlloc(E,R). You can use this element
in ZEN functions, for instance set it to one: ZENEItSetToOne(E,R). For efficiency
reasons, there is no garbage collector in ZEN. Hence, it is necessary to free the
objects after use. For an element, the function to use is ZENEItFree(E R), and
for a ring ZENRingClose(R).
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2.2 Ring extensions

Let’s recall that if a set of cardinality n is a finite field, then n is a power of
a prime n = p™, and there exists isomorphic representations of this set using
an irreducible polynomial P over Z/ P More generally, the quotient structure
Z/ 71X/ P(X) is a finite field if and only if n is prime and P is irreducible.

One of the advantage of ZEN, is to allow easy use of polynomial exten-
sions. For instance, if we want to define a polynomial extension over the above
ZENRing R, we will need to declare a polynomial ZENPoly P, define it over R,
for instance with the function ZENPolyReadFromString, and use it to build the
extension ZENRing R2 with ZENRingExtAlloc(R2,P,R).

Now the main advantage of ZEN is that there is no change in the syntax
of functions whether you work in a modular ring, an extension or a tower of
extensions. It is therefore possible to write generic programs, and choose the ring
or field of definition dynamically when they are used, even if the mathematical
structure differs.

2.3 A programming example

As this is certainly the best way to understand how to make programs that use
ZEN, here is a small example. A more complex and more interesting example is
given in the ZENFACT documentation.

The purpose of this program is to perform inversion of some elements in
some finite rings. This is a very simple example but it should be of some help
for understanding the philosophy of ZEN.

2.3.1 Preliminaries

The first thing to do is to include some standard libraries header files.

#include <stdlib.h>
#include <stdio.h>
#include "zen.h"

We do not need any function in this program, due to its simplicity, but we
begin our main function by the declarations we need.

main()

{
BigNum q,r;
BigNumLength ql,rl;
ZENE1lt A,I,E0,E1,EEQ;
ZENRing K,R,E,EE;
ZENPoly P,Q,PR;

We do not need other objects in this example. That’s why we don’t have
here any ZENMat, ZENSr, nor ZENEc. Nevertheless, the operations that use
these types are similar in their syntax to the folowwing ones.
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2.3.2 Modular rings

Our example will first consist in building the finite field Z/9347766837- For
this purpose we need a BigNum representing the modulo. We can for instance
use the following function to this purpose.

ZBNReadFromString(&q,&ql,"234776683",10) ;

In order to check the correctness of the implementation, we now print the
obtained BigNum.

printf("q="); ZBNPrintToFile(stdout,q,ql,10); printf("\n");

Let’s see now how to build our finite field. The syntax of the function is
rather simple, and affects to the K variable the structure we want.

ZENBaseRingAlloc(K,q,ql);

If we want to invert 234675 in this field, we will need two elements, one for
the data, the other for the result. We first need to allocate them and as they
are elements of K, the syntax we use is as follows.

ZENE1tAlloc(A,K); ZENEltAlloc(I,K);
Now, we can set the data and check the value.

ZENE1tReadFromString(A,"234675",10,K) ;
printf("A="); ZENEltPrintToFile(stdout,A,10,K); printf("\n");

In order to obtain the result, we need a call to the suited function.

ZENEltInverse(I,A,K);
printf("1/A mod q = ");
ZENE1tPrintToFile(stdout,I,10,K);
printf ("\n");

As we no more need these values, we mustn’t forget to free the memory they
use. This point is important for larger programs that could grow indefinitely in
memory without such precautions.

ZENE1tFree(A,K); ZENEltFree(I,K);

We now take the invert of the same value, but considering it in another
structure Z/g7459874537- The fact is that this is not a field. Hence, in such
a ring, we can no more ignore the return values of the inversion function, as
this can be the signal of a mathematical incoherence. We continue to ignore the
returned values of the first functions for simplicity purpose.

ZBNReadFromString(&r,&rl,"8745287453",10) ;
printf ("r="); ZBNPrintToFile(stdout,r,rl,10); printf("\n");
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ZENBaseRingAlloc(R,r,rl);

ZENE1tAlloc(A,R); ZENEltReadFromString(A,"234675",10,R);
printf("A="); ZENEltPrintToFile(stdout,A,10,R); printf("\n");
ZENE1tAlloc(I,R);

Now, we take care of the possible exception. Of course, as the example was
chosen, we will find here a factor of the modulus.

if (ZENEltInverse(I,A,R)==ZEN_NO_INVERSE) {
printf("Non invertible element : modulus factor = ");
ZENE1tPrintToFile(stdout,ZENRingFact(R),10,R); printf("\n"); }
else {
printf("1/A mod r = ");
ZENE1tPrintToFile(stdout,I,10,R);
printf("\n"); }

In fact, the set of possibly returned values is slightly larger, but it is unuseful
to here detail all the other possibilities. We don’t forget to free our variables
before proceeding, including this ring.

ZENE1ltFree(A,R); ZENEltFree(I,R); ZENRingClose(R);

2.3.3 Extension rings

We will now work in a slightly more complex structure, namely

Z/934776683Z1X]/ X3 1 3234234X2 + 234234 X + 124123

This example is such that we have again a finite field. The definition of this
new ZENRing has the same structure as before. We first define a modulus and
use it to define the field.

ZENPolyReadFromString(P,
" (1) *X"3+(3234234) *X~2+(234234) xX+(124123) ",
10,K);

printf ("P="); ZENPolyPrintToFile(stdout,P,10,K);

ZENExtRingAlloc(E,P,K); ZENPolyFree(P,K);

Now, if we want to invert 234234t + 3234234 in this field, we just have to
write the following.

ZENE1tAlloc(EO,E);
ZENEltReadFromString (EQ," (0) *t~2+(234234) *t+(3234234)",10,E) ;
printf ("EO="); ZENEltPrintToFile(stdout,E0,10,E); printf("\n");

The syntax of the strings used for polynomials could appear complex at this
point, but the apparently redundant parenthesis will soon show their usefulness
in towers of extensions. We now perform the inversion.



2.3. A PROGRAMMING EXAMPLE 13

ZENE1tAlloc(E1,E); ZENEltInverse(E1,EQ,E);
printf("1/E0 mod q = ");
ZENE1tPrintToFile(stdout,E1,10,E);

printf ("\n");

Of course, all this could appear heavy for such a simple operation, but the
important point here is that all the strings used to define the parameters of this
example could be defined dynamically in the program. In this case, the program
is compiled once for all and can work for every structure.

2.3.4 Double extension

We continue to increase complexity. We denote as follows the two structures we
have just defined:

K
E =

79347766837
K[t/ 1 323423442 + 2342341 + 124123

and we now build the following structure:

EIX]/ x> 1 (12412312 + 234234) X + (234234¢ + 3234234)

We will use here a construction of the polynomial that uses coefficients. It
should be here more readable. We first define the element 124123t2 + 234234
over E, and as the element EQ was kept, we can define our new modulus.

ZENE1ltReadFromString(E1," (124123)*t"~2+(234234)",10,E) ;
printf ("E1=");

ZENE1tPrintToFile(stdout,E1,10,E);

printf ("\n");

We now allocate a polynomial, of maximal degree 2, set it to X2, and then
set its coefficients. This procedure is the only guaranteed one to obtain the
desired result. In particular, one should not omit to first set the polynomial to
its monomial of highest degree, because this is the way to fix the degree of the
polynomial. Setting the coefficients, on the contrary, is a fast procedure which
does nothing but... setting a coefficient.

ZENPolyAlloc(Q,2,E);

ZENPolySetToXi(Q,2,E);

ZENPolySetCoeff(Q,1,E1,E); ZENPolySetCoeff (Q,0,E0,E);
printf ("Q=");

ZENPolyPrintToFile(stdout,Q,10,E);

printf ("\n");

We can now build our double extension using the same function as before.

ZENExtRingAlloc(EE,Q,E); ZENPolyFree(Q,E);
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The following is the setting and inversion of an element in this double ex-
tension.

ZENE1tAlloc(EEO,EE); ZENPolySetToXi(ZENE1t2Pol(EEO,EE),1,E);
ZENPolySetCoeff (ZENE1t2Pol (EEO,EE) ,1,E1,E);
ZENPolySetCoeff (ZENE1t2Pol (EEO,EE) ,0,E0,E);

printf ("EEO=");

ZENE1tPrintToFile(stdout,EE0,10,EE) ;

printf("\n");

ZENE1tFree(EO,E) ; ZENEltFree(E1,E);

ZENE1tAlloc(E1,EE); ZENEltInverse(E1,EEQ,EE);
printf ("1/EE0=");
ZENE1tPrintToFile(stdout,E1,10,EE);
printf("\n");

ZENEl1tFree(E1,EE);
ZENRingClose(EE); ZENRingClose(E); ZENRingClose(K);
exit (0);

2.3.5 Compilation

The compilation of this program will be done by a command like the following
one gcc -l../include example.c ../lib/linux/libzen.a -Im, as the file example.c is lo-
cated in the zen/inputs directory. The obtained output of the a.out executable
should then be the following.

q=234776683
A=234675
1/A mod q = 11532995
r=8745287453
A=234675
Non invertible element : modulus factor = 7
P=(1) *X~3+(3234234) *X "2+ (234234) *X+(124123) EO=(0) *t "2+ (234234) *xt+ (3234234)
1/E0 mod q = (226257462)*t"~2+(25554697) *xt+(70525059)
E1=(124123) *t~2+(234234)
Q=C(0) *xt~2+ (1)) *X~2+((124123) ¥t "2+ (234234) ) *X+( (0) *t ~2+(234234) *xt+(3234234) )
EE0=((124123) *t~2+(234234) ) *u+((0) *t~2+(234234) xt+(3234234) )
1/EE0=((203916487) *t~2+(83557476) *t+(113630396) ) *u+ \
((138383902) *t~2+(180392990) *t+(206406567) )



Chapter 3

Understanding ZEN

3.1 The main principles

In this section, we describe the main concepts of ZEN. Mainly the objects it
is supposed to handle, the functions working on these objects, the way how
precomputations can be performed or what is a clone of a ring to increase

performances.

3.1.1 The types of ZEN

The few types of ZEN are as follows. First of all, let’s recall that ZEN was
originally based on the BigNum library, developed jointly by INRIA and Digital

PRL.

BigNum

Large integers. Basically a big integer is an array of
BigNumDigit where BigNumDigit is simply an integer, gen-
erally of type unsigned long.

Hence, an integer n will be represented by a cou-
ple of two C wvariables (n,nl) of respective types
(BigNum, BigNumLength), where the BigNum type is a
pointer BigNumDigit x. Value of n will then be

nl—1

n=3 nfi <2SIZE_BLOC)"'

=0

If you know the size sl of your integer in bits, the num-
ber of BigNumDigits used will be given by the ZEN macro
divSizeBloc(sl)+1. The number of bits used in the most sig-
nificant BigNumDigit is modSizeBloc(sl).

Note 1 It is important to note that due to an evolution in the BigNum library,
the length of a BigNum is now unsigned. This may cause some bugs in previous
implementations on top of BigNum!.

1For instance, the following loop on a BigNumLength nl will now infinitely run because nl
is always larger than zero:

15
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the ZBN layer functions is done in appendix 4.8.

objects of ZEN

Afterwards, the following types (ZENElt, ZENPoly, ZENSr and ZENMat) are
allocated in a “current” ring of type ZENRing.

ZENER

ZENPoly

ZENSr

Any element of a finite ring. This type is in fact an union
of elementary types, the size of which are at most the size
of a unsigned long or the size of a pointer. In a first ap-
proximation, you can see a ZENEIt like a polynomial or an
integer.

Any polynomial of a finite ring. This structure can be seen
as containing the degree of a polynomial, its allocated length
and an array of ZENElIts for its coefficients.

Any truncated series of a ZENRing. As algorithms for poly-
nomials can be speeded up for series computations, we intro-
duced the concept of truncated series in ZEN. This structure
can be seen as containing the valuation of a series, its trun-
cated degree, its allocated length and an array of ZENElts
for its coefficients.

Use the following instead:

for(nl=ZBNNumDigits(n,nl)-1;nl>=0;nl-)

for(nlI=ZBNNumDigits(n,nl);nl-;)
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ZENMat

Any matrix of a ZENRing. It is classically a two-dimensional
array of elements. This means that C-implementation in-
volves a differentiation between matrices that does not ex-
ist in the mathematical definition, because the access of the
(r,c) element of a matrix can be done either by looking at
the c-th element of the r-th row, or the r-th element of the c-
th column. A ZENMat will therefore be of ZENMatTypeRow
if the continuity of rows is kept in the data structure, and of
ZENMatTypeCol otherwise. Of course, this has no influence
on the result of the operations (except if indicated). How-
ever, the performances may greatly change in certain cases.
For instance, the permutation of two rows of a matrix will
be faster if the matrix is of type ZENMatTypeRow.
Furthermore, a special class of matrices is the class of per-
mutation matrix. A permutation matrix is a square matrix
with a single one in every row or column. It can be stored by
keeping for every row OR every column the column OR row
index of the one. We have therefore two additional types
for permutation matrices ZENMatTypeColPermutation and
ZENMatTypeRowPermutation. Permutation matrices should
be used only by advanced users.

The dimensions of a matrix are of Dim type which is defined
in zentypes.h to be int.

As explained previously, we allocate and then handle variables of these types
in rings. Rings must have the following type.

ZENRing

This is the main structure of ZEN. It represents one finite
ring, that is to say Z/nZ where n is any integer (even if it is
not prime) or any polynomial finite ring over another (even
if the definition polynomial is not irreducible). It contains
some general data about finite rings, mainly its characteris-
tic, its degree, its number of elements, its definition polyno-
mial and pointers to functions able to act on elements
of this finite ring. So each time the user will call a ZEN pro-
cedure, it will be probably automatically replaced thanks to
macros defined in zen.h by a pointer stored in this structure.

Built over a ring, an elliptic curve has type ZENEc.
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ZENEc An elliptic curve of a finite ring. In ZEN any elliptic curve
is a set of couples (X,Y") such that

Y24+ a1 XY 4+ a3y = X3 +au X% + as X + ag,

plus a point at infinity. So such a structure contains the co-
efficients ay, as, as, a4 and ag, its discriminant D (it must be
different from 0) and invariant J. Moreover, as in a ZENRing
pointers on functions are stored here too to perform opera-
tions on elliptic curve points. So some other macros defined
in zen.h replaced calls of procedures described in this docu-

mentation by calls to fields of this structure.

And finally, a point of an elliptic curve has type ZENEcPt.

ZENEcPt Any point of an elliptic curve defined over any finite ring.
It can be the infinity point or a couple (X,Y).

3.1.1.2 Precomputations and clones

We implemented two ways to improve performances in ZEN, “precomputations”
and “clones”.

Precomputations consist in computing data in advance in order to speed up
some operations, typically multiplications or exponentiations. By default we
chose to do no precomputation while initializing a ring because it can take a lot
of time for large rings. But for some specific applications, this time is quite small
in front of the remaining computations. This is why we provide the function
ZENAddPrc(Rg, prc) which performs and stores the precomputations specified
by the variable prc of type ZENPrc in a ring Rg.

ZENPrc Structure for handling precomputations. When working in
a finite rings, some procedures can be speeded up at the
expense (in time and space) of specific precomputations. So,
once initialized a finite ring, you can in ZEG add or possibly
suppress some precomputations in it. This structure enables
the user to specify which precomputations he needs. Then,
he only has to give it to the procedures which actually does

the precomputations.

Another way to improve performances is to work with another representation
of aring. The default representation is a polynomial representation. Elements in
these rings are integers modulo another integer or polynomials modulo another
polynomial. There exists numerous other representations. For instance, for
small rings, you can tabulate everything and then handle indexes in tabulars, or
compute a normal basis and then work in this basis. These representations are
called clones in ZEN. You can compute a clone of any ring Rg with the function
ZENRingClone(Rg, cIn). The type of the clone depends on the parameter cln
which is of type ZENClIn.
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ZENCIn Structure for handling clones. Finite rings can have several
representation. The default is the polynomial representation
but ZEN can handle other representations, for instance by
tabulating the operations.

3.1.2 The functions of ZEN
3.1.2.1 Modular rings

As we work in finite rings, we must begin by building a modular ring. This
is done by using the BigNum representation of an integer and a call to the
ZENBaseRingAlloc(R,n,nl) procedure. It allocates a ZENRing R; and initializes
its parameters.

On success it returns 0 and a non zero exception flag otherwise. We will see
later (section 3.1.3) how to use the informations of this flag. This is the normal
behavior of all ZEN functions with the exception of the void ones. In fact, if you
know that your program should never raise an exception, you can simply not
use the return values because in debug mode, the library will not remain silent
in case of exceptions.

Now, if we want to use objects on this ring we just have for instance to allo-
cate a ZENEIt E: ZENEItAlloc(E,R). Some simple functions with self-contained
names allow to initialize the element:

e ZENEItSetToZero(E,R).
ZENEItSetToOne(E,R).

ZENZToEIlt(E,n,nl,R) gives the value of the BigNum (n,nl) to E.

ZENEItReadFromString(E,s,base,R) reads the string s in base base and af-
fects E accordingly.

ZENEItReadFromFile(E.fd base,R) reads the FILE xfd in base base and af-
fects E accordingly.

At the end of computation, one should liberate the memory allocated for this
element with the function ZENEItFree(E,R). The figure 3.1 resume the sequence
of operations in a modular ring.

Note 2 It is possible to build the rational field Q by using a BigNum (n,nl) = 0.
This feature is still experimental, and the efficiency is not guarenteed.

3.1.2.2 Polynomial extensions

The main advantage of ZEN is that polynomial extensions are very easy to
build. As soon as a ZENPoly P is defined with the correct value, an extension
ZENRing R2 can be created by the command ZENExtRingAlloc(R2,P,R). This
can be repeated as long as wanted with the same syntax. Two elements in a ring
Rx are always added by the function ZENEItAdd(A,B,Rx), whatever the ring is.
Of course, for efficiency reasons, it will be faster to define a field like F14 as an
extension over Fy of degree 4 instead of a double extension of degree 2, even if
these two constructions are isomorphic.
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SEQUENCE OF OPERATIONS

Initialization of a modulus

EXAMPLE OF FUNCTION

Bighur m; BigNumbengtht;
ZBNReadFromString (&n,&nl,
"4951760157141521099596496921",10) ;

Initialization of the ring

ZENRing R;

ZENBaseRingAlloc(R,n,nl);

Creation of an element

ZENE1t E;
ZENE1tAlloc(E,R);

Sequence or arithmetic operations

ZENE1tSetToOne(E,R);

ZENE1tAdd(E,E,R);

Output of the results

ZENE1tPrintToFile(stdout,E, 10,R);

Memory freeing

ZENEltFree(E,R);
ZENRingClose(R);
ZBNF (n) ;

Figure 3.1: Sequence of operations in a modular ring.
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Types Modified Parameters Ring |
of arithmetic of object of operation object used
ZEN Elt Multiply |( X, A B, R )

Figure 3.2: ZEN syntax

3.1.2.3 The syntax of ZEN

These small examples show the syntax principles of ZEN that are resumed in
figure 3.2

3.1.3 Error handling

Procedures of the ZEN library raise errors by their outputs. There are 2 types
of errors, system and mathematical errors.

System errors occur when a function returns ZENERR or ZENNULL. In that
case, the internal global variable zen_error the type of which is zen_err was set
by this function with ZENSetError() (see the file sys.h). Here, the user only has
to call the function ZENError() in its code to handle this error.

Most functions of the library can be used in any rings (only few of them
can only apply in finite fields) even if they are not defined everywhere. Math-
ematical errors generally occures when a function returns ZEN_NO_INVERSE.
That means that somewhere in the code, a function tried to inverse an element
e modulo a non prime integer n or a non irreducible polynomial P(X) and that
the ged of e with n or P(X) is not 1. In that case, a factor of the corresponding
modulo is put in ZENRingFact(Rg) where Rg is the current finite ring.

The situation can be sligtly more complicated when building several not
prime or not irreducible finite rings. For instance, when you are first working
in Ry = Z/15Z and then in Ry = Ro[T]/(T? + AT + 3). On the first hand,
a call to ZENEltInverse() with argument 27 + 6 will return ZEN_NO_INVERSE
and a call to ZENRingFact(R;) will return 7'+ 3. On the other hand, a call to
ZENEltInverse() with argument 3T + 6 will return ZEN_NO_INVERSE and a call
to ZENRingFact(R;) will return 3. Here, the degree of ZENRingFact(R;) is 0
and so, we can call ZENRingFact(Ry) to finally get 3, a factor of 15, the modulo
of the first finite ring.

The values of ZENERR and ZENNULL are defined as follows:

#define ZENERR -1
#define ZENNULL NULL

In fact, in case of error, the functions of ZEN return one of the following
# define ZERR _ZENERR()

# define ZNULL _ZENNULL()

This is intended to allow interactive debugging by giving the possibility of
setting breakpoints in the functions _ZENERR and _ZENNULL. Therefore this
feature is disabled in optimized compilation. In that case, most of the tests are
skipped, except those that check if an inverse was impossible to compute.

In debugging mode, the flag debugflag can be set to non zero. This acti-
vate verbose error outputs. Each time one of the two functions -ZENERR() or
_ZENNULL is called, an error message as printed by ZENError() is printed on
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the standard error output, according to the value of zen_error The real structure
of zen_error is as follows.

typedef struct zen_err{
arith 1lib;
int fct;
int err;
} zen_err;
extern zen_err zen_error;
extern int debugflag;
The internal functions of ZEN raised errors with the function ZENSetError().

Procedure 1 Setting the error condition flags

void ZENSetError(arit,function,error)
arith arit;
int function,error;

Input: The three flags describing the error exception:
e the arithmetic in which it occured,
o the function of ZEN in which it occured,

e the type of error.

Side effect: The zen_error global structure is set.
Note: This is not a user purpose function. It is described here to
inform users about the way the errors are handled by the
library.

When OptimizingCode is set to NO in file specif.def, the following flag is set
by default :

int debugflag=1;

This flag activates automatic printing of error messages whenever a system
error occurs. This is useful for debugging small programs in which it is somehow
pedantic to test all returned values.

Procedure 2 Writing a message describing an error

void ZENError ()

Side effect: An error message is printed on the standard error output.
Note: The message depends on zen_error.
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Procedure 3 Debugging function

int _ZENERR()

Output: ZENERR
Side effect: If debugflag is non zero, prints an error message.
Note: This function can be used to set breakpoint in a debugger.
It is never called when the library is compiled in optimized
mode.

Procedure 4 Debugging function

void *_ZENNULL()

Output: ZENNULL pointer.
Side effect: If debugflag is non zero, prints an error message.
Note: This function can be used to set breakpoint in a debugger.
It is never called when the library is compiled in optimized
mode.

3.2 Optimization

In most cases, the above functions will be sufficient to obtain good performances.
Nevertheless, some applications will need much more efficiency, and the following
is a way to achieve quite good improvements.

3.2.1 Precomputations

Another principle of ZEN is to perform only what is asked for. Therefore, on

a ring creation, no precomputation is done. But some precomputations can

be asked for by using a precomputation structure ZENPrc Prc. For instance,
ZENPrcSetAll(Prc) activates all the precomputations. A call to ZENRingAddPrc(R,Prc)
will then perform the precomputations that are compatible with the type of ring.

The available flags are described in section 4.7.1.

3.2.2 Clones

They are several way to represent a ring and this fact yields several computer
representations. To deal with these numerous representations, the user can
compute a “clone” of a ring with the function ZENRingClone(). Unfortunataly,
only a few clones are now available.
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3.2.2.1 Tabulating

A small finite ring can be cloned using the index representation. All the elements
Z of a ZENRing R are represented in the clone C obtained from R by the result
(n,nl) of ZENEItToZ(n,p-nl,Z,R). That is to say, each element of a ring is ordered
by the integer value it takes once evaluated in the characteristic.

Addition, multiplication, negation and inversion are tabulated at the initial-
ization. Therefore, all the subsequent operations will take constant time. The
limit size is that of an unsigned char, that is to say 256 elements. Polynomials
and matrices use also the same representation which saves memory .

3.2.2.2 Use of logarithms

A small finite field F can be cloned using the logarithm representation. The
first operation performed is to find a generator « of the finite field. Then, a
table of all the logarithms is computed. The adopted representation in ZEN is
the following:

Element of F — ZEN representation

0 = 0
1 > 1
a > 2
ol — i+1

Hence, multiplication and inversion are easily performed by a modular addition
on the exponent, assuming that a first test of equality to zero is performed on
each operand:

o' xal = (i+1)+(j+1)—1
(@)1 —(i+1)+2

For negation, the table of this operation is computed at the initialization of
the clone. For addition, another table is computed that stores all the exponent
of each element incremented by one. Addition of two elements can then be
performed by a multiplication using the formula

o+ o =14 a7,

The limit size is that of an unsigned short, that is to say at most 65536 elements.
Polynomials and matrices use also the same representation which saves memory.

3.2.2.3 Use of chinese remainder theorem

A ZENRIing can be built upon two ZENRings using the Chinese remainder the-
orem.

Theorem Let m andn be two natural integers, m prime with n. The two rings
Z/(mn)Z and Z/ 7, % L[ 7, are isomorphic. More precisely, the application

x = (zmodm,x modn)
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is isomorphic and its reciprocal is
0~ (zm, Tn) = Zmn(n™' mod m) + z,m(m ™" mod n) mod mn.

The same kind of result can be stated for polynomials.

The implementation of these results in ZEN is more general: one can use
N ZENRings to build the two isomorphics ZENRings. The N ZENRings must
be of same level (N modular rings, or N extensions over same ring). The
representation of an element in such a ring, is the N-array of the N projections
of this element in the IV subrings.

The function ZENChineseRingCreate() performs such a construction.

3.2.2.4 Use of Montgomery’s representation

Montgomery’s idea is implemented in ZEN. The following description is largely
inspired from [5, pages 133-135].

We now assume that we want to work in a modular ring Z/ pr7, with N an
odd integer. Let R be an integer greater than N and prime with N. Then, the

mapping

¢ : Z/nz — Z/ng
r = & =RxmodN

is invertible and we call & the N-rsidu of z.
It is always possible to find u and v two integers such that

Ru—vN =1,
with

O0<u< Nand 0<wv<R.

Theorem Let z be an integer between 0 and RN, the following algorithm
computes zR~1modN.

1. Compute m = ((z mod R)v) mod R.
2. Let t = (2 +mN)/R.
3. If t is greater than N, subtract V.

4. Return ¢.

Proof We have

m=zvmod R & mN = z(wN) mod R,
& mN = —zmod R,
< mN + 2z =aR,

with a an integer. Hence, ¢ in step 2 is an integer. Furthermore, tR = z mod N.
As 0<z < RN and 0 <m < R, we have, after step 2, 0 <t < 2N. Hence, the
returned value after step 3 is zR~! mod N.

We denote qAS_l the above procedure.
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Size (bits) 128 | 256 | 512 | 768 | 1024
ZEN(standard ring) 0.027]0.13 | 0.76 | 2.27 | 5.0
ZEN(clone + precomputations) | 0.013 | 0.08 | 0.563 | 1.65 | 3.8

Figure 3.3: modular exponentiation a® mod ¢ on sparc II (times given in sec-
onds)

Montgomery’s idea is to replace modular oerations on integers by operations
on N-rsidus. In this case we have

Exg = ¢~ (& x §),

because
(zy)R = (zR)(yR)R™".

On the other hand, we have

because
(xR = (zR)"'R®.

Implementation in ZEN In order to use Montgomery’s representation, one
has to use a clone. The implementation follows what precedes, except that the
inversion is faster using the following procedure:

1. Convert the N-rsidu in the original modular ring.
2. Inversion in the original ring.

3. Re-conversion to obtain the N-rsidu.

Performances The table 3.3 shows the improvement obtained by Mont-
gomery’s reduction on the classical example of modular exponentiation. The
observed gain is in the range 25 to 40 %.

Note Montgomery’s idea applies only for odd modulus. For even ones, one
has to use chinese remainder theorem to get rid of even factors.



Chapter 4

Enumerating the functions
of ZEN

All the procedures described here form the libzen.a library. These procedures
are all macros defined in zen.h. There are four types of such macros:

e Macros which are an interface for a field of a ZENRing Rg. The last
argument of these macros is Rg.

e Macros which are an interface for an elliptic curve ZENEc E. The last
argument of these macros is E.

e Macros which are an interface for a function of the library. Such functions
are prefixed by _-ZEN.

e Macros for basic operations, for instance getting a field of a structure
described in section 3.1.1.

Note 3 The ZEN format is entirely made of macros. It is therefore
strictly forbidden to use side effects in parameters of ZEN calls.

4.1 Procedures to handle finite rings.

A first set of procedures enables the user to allocate or free a finite ring.

4.1.1 Extension allocation.

The principle of the library is that efficient procedures are chosen on the cre-
ation of a ZENRing by setting a lot of pointers on functions inside the ZENRing
structure. Therefore, the use of generic functions is possible together with ef-
ficiency as the function call only needs one more dereferenciation of function
pointer.

27
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Procedure 5 Initialization of a ring Z/nZ.

int ZENBaseRingAlloc(R, n, nl)
ZENRing R;
BigNum n;
BigNumLength nl;

Input: An unallocated ZENRing, and a BigNum n of size nl.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: R is allocated and set to Z/nZ. If n =0, R is allocated and
set to Q (experimental feature).
Note: No precomputations are done in order to speed up
some arithmetic operations. If you want some, see
ZENRingAddPrc() and ZENRingRmPrc().

Procedure 6 I[nitialization of a finite extension over another finite ring.

int ZENExtRingAlloc(Ex, P, Rg)
ZENPoly P;
ZENRing Ex,Rg;

Input: An unallocated ZENRing, and a polynomial P defined over a
finite ring Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: The extension Ex is allocated and set to Rg[X]/(P(X)).

Procedure 7 Closing a finite ring.

int ZENRingClose(Rg)
ZENRing Rg;

Input: A finite ring Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Rg is completely freed.
Note: A call to ZENRingRmPrc(Rg, ZENRingPrcp(Rg)) is per-
formed at the beginning of this procedure.

Procedure 8 Closing a clone ring.

int ZENRingCloneClose(R)
ZENRing R;

Input: A ring R.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: R is freed as well as the underlying ZENRingOrigin(R), if it
exists. If R is a chinese ring, the list of rings is clone freed,
but the under-underlying ZENRingOrigin(R) is not freed.
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Procedure 9 Closing a finite ring.

int ZENRingFullClose(Rg)
ZENRing Rg;

Input: A finite ring Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Rg is completely freed, as well as the underlying rings.
Note: This procedure can be used for freeing a ZENRing previously
read from a file by ZENRingReadFromFile.

Procedure 10 Copying a ring.

ZENRing ZENRingCopy(R)
ZENRing R;

Input: A finite field R.
Output: ZENNULL if an error occurred, a copy of the finite Ring R
without ist precomputation otherwise.

Procedure 11 Writing to file to an internal representation.

int ZENRingPrintToFile(file, Rg)
FILE x*file;
ZENRing Rg;

Input: A stream file, an allocated ZENRing Rg.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: Printing a representation of Rg to file.
Note: In an extension tower, one only needs to save the last ring
as the structure is recursively saved on file.

Procedure 12 Reading from file.

int ZENRingReadFromFile(Rg, file)
FILE x*file;
ZENRing Rg;

Input: A stream file and a pointer on a ring Rg.
Output: 0 if no error occurred, ZENERR otherwise.
Side effect: Rg is created according to the datas in file.
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4.1.2 Ring parameters

Procedure 13 The “characteristic”.

Input:
Output:
Note:

BigNum ZENRingP (Rg)
ZENRing Rg;

A ZENRing Rg.

The “characteristic” of Rg.

This procedure is a macro which returns one field of Rg.
You must not disallocate it.

Procedure 14

Input:

Output:
Note:

The size of the “characteristic”.

int ZENRingPl (Rg)
ZENRing Rg;
A ZENRing Rg.
The size of the “characteristic” of Rg in base 95IZE_BLOC,
This procedure is a macro which returns one field of Rg.

Procedure 15

Input:

Output:
Note:

The size of the elements.

int ZENRingSizeElt(Rg)
ZENRing Rg;

A ZENRing Rg.

The size of the elements of Rg in base 9SIZE_BLOC,

This procedure is a macro which returns one field of Rg.
Usually it has the same value as ZENRingPI(Rg) except if

the modulus is a power of 9IZEBLOC ' 1y this case it is
equal to 1 or ZENRingPI(Rg) — 1.

Procedure 16

Input:
Output:
Note:

The number of elements of Rg.

BigNum ZENRingQ(Rg)
ZENRing Rg;

A ZENRing Rg.

The number of elements of Rg.

This procedure is a macro which returns one field of Rg.
You must not disallocate it.
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Procedure 17 The size of the number of elements.

Input:
Output:

Note:

int ZENRingQl(Rg)
ZENRing Rg;
A ZENRing Rg.

The size of the number of elements of Rg in base
oSIZE BLOC

This procedure is a macro which returns one field of Rg.

Procedure 18

Input:
Output:

Note:

The finite subring.

ZENRing ZENRingDef (Rg)
ZENRing Rg;

A ZENRing Rg.

NULL if Rg is Z/nZ, the finite ring R if Rg is a polynomial
finite ring defined over R.

This procedure is a macro which returns one field of Rg.
You must not disallocate it.

Procedure 19

Input:
Output:

Note:

The definition polynomial.

ZENPoly ZENRingPol(Rg)
ZENRing Rg;

A ZENRing Rg.

NULL if Rg is Z/nZ, the polynomial which defines Rg oth-
erwise.

This procedure is a macro which returns one field of Rg.
You must not disallocate it.

Procedure 20

Input:
Output:

Note:

The degree of finite ring.

int ZENRingDeg(Rg)
ZENRing Rg;

A ZENRing Rg.

0 if Rg is Z/nZ, the degree of the polynomial which defines
Rg otherwise.

This procedure is a macro which returns one field of Rg.
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Procedure 21

Input:
Output:
Note:

CHAPTER 4. ENUMERATING THE FUNCTIONS OF ZEN

The number of finite rings defined over a subfinite ring.

int ZENRingExt (Rg)
ZENRing Rg;

A ZENRing Rg.
The number of finite rings defined over Rg.
This procedure is a macro which returns one field of Rg.

Procedure 22 A factor of a modulo.

Input:
Output:

Note:

ZENE1lt ZENRingFact (Rg)
ZENRing Rg;

A finite ring Rg.

A factor of a modulo which defines Rg or a subfinite ring of
Rg if a function of the library returned ZEN_NO_INVERSE.
This procedure is a macro which returns one field of Rg.
You must not disallocate it. This field is set by operations
such as ZENEltinverse when an inverse was impossible to

compute. Therefore, a call to this function is pertinent only
after a ZEN_NO_INVERSE return of such a function.

4.2 Procedures to handle elements of finite rings

These procedures are current operations on elements of finite rings.

4.2.1 Allocation

Procedure 23 Creation.

int ZENEltAlloc(a, Rg)
ZENE1t a;
ZENRing Rg;

Input: A finite ring Rg and o ZENEIt a.
Output: 0 if no error occurred, ZENERR otherwise.
Side effect: a is allocated.
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Procedure 24 Freeing.

void ZENEltFree(a, Rg)
ZENElt a;
ZENRing Rg;

Input: A ZENER a of a finite ring Rg already allocated with
ZENEItAlloc.
Side effect: a is freed.

4.2.2 Assignment

Procedure 25 Assigning.

void ZENEltAssign(a, b, Rg)
ZENE1lt a, b;
ZENRing Rg;

Input: Two allocated elements a and b of a finite ring Rg.
Side effect: a is filled with b.

Procedure 26 Setting to zero.

void ZENEltSetToZero(a, Rg)
ZENE1t a;
ZENRing Rg;

Input: An allocated element a of a finite ring Rg.
Side effect: a is set to zero.

Procedure 27 Setting to one.

void ZENEltSetToOne(a, Rg)
ZENE1t a;
ZENRing Rg;

Input: An allocated element a of a finite ring Rg.
Side effect: a is set to one.
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Procedure 28 Setting to a generator.

void ZENEltSetToGenerator(a, Rg)
ZENE1t a;
ZENRing Rg;

Input: An allocated element a of a finite ring Rg.
Side effect: a is set to one if Rg is a prime field or set to t if Rg =
R[t]/((P(t)) where P(t) is a polynomial which defines an
extension over a sub-ring R.

Procedure 29 Setting to random.

void ZENEltSetRandom(a, Rg)
ZENE1t a;
ZENRing Rg;

Input: An allocated element a of a finite ring Rg.
Side effect: a is set to random.

Procedure 30 Enumerating.

void ZENEltSetNext(a, Rg)
ZENE1t a;
ZENRing Rg;

Input: An allocated ZENEIt a of a finite ring Rg.
Side effect: a is set to another element of Rg.
Note: This procedure can be seen more or less as
ZENEItToZ(n, nl, a, R); ZBNAddCarry(n, nl, 1);
ZENZToElt(a, n, nl, R).  After a number of call of this
function equal to the number of elements ZENRingQ(Rg),
one obtain the same element.

Procedure 31 Converting a BigNum to o ZENElt

int ZENEltFromBigNum(e,n,nl,R)
ZENElt e;
BigNum n;
BigNumLength nl;
ZENRing R;

Input: A ZENEIt, a BigNum and its length and o ZENRing.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: The big integer is first reduced modulo the characteristic of
the field. The result is then assigned to e using ZENZToElt.
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Procedure 32 Converting a ZENEIt to a ZENEIt

int ZENEltConvert(el,R1,e2,R2)
ZENEl1t el,e2;
ZENRing R1,R2;

Input: Two ZENElts, and two ZENRings.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: The element el of R1 is affected with €2 after possible mod-
ular reduction. R1 and R2 must be compatible rings.

4.2.3 Test

Procedure 33 FEquality.

int ZENEltAreEqual(a, b, Rg)
ZENElt a, b;
ZENRing Rg;

Input: Two allocated elements a and b of a finite ring Rg.
Output: The predicate a = b.

Procedure 34 Is Zero.

int ZENEltIsZero(a, Rg)
ZENElt a;
ZENRing Rg;

Input: An allocated element a of a finite ring Rg.
Output: The predicate a = 0.

Procedure 35 Is one.

int ZENEltIsOne(a, Rg)
ZENEl1t a;
ZENRing Rg;

Input: An allocated element a of a finite ring Rg.
Output: The predicate a = 1.
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Procedure 36 Is a square in finite fields.

int ZENEltIsASquare(a, Rg)
ZENElt a;
ZENRing Rg;

Input: An element a of a finite ring Rg.
Output: ZENERR if an error occurred, 1 if a is a square, 0 otherwise.
Note: This procedure is valid only in finite fields. The algorithm
used is an exponantiation when the characteristic is odd. In
characteristic 2 the answer is always 1!

4.2.4 Arithmetic

Procedure 37 Addition.

void ZENE1tAdd(b, a, Rg)
ZENElt b, a;
ZENRing Rg;

Input: Two allocated elements a and b of a finite ring Rg.
Side effect: b += a.

Procedure 38 Negation.

void ZENEltNegate(b, a, Rg)
ZENElt b, a;
ZENRing Rg;

Input: Two allocated elements a and b of a finite ring Rg.
Side effect: b = —a.

Procedure 39 Subtract.

void ZENEltSubtract(b, a, Rg)
ZENEl1t b, a;
ZENRing Rg;

Input: Two allocated elements a and b of a finite ring Rg.
Side effect: b -= a.
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Procedure 40 Squaring.
void ZENEltSquare(b, a, Rg)
ZENE1lt b, a;
ZENRing Rg;
Input: Two allocated elements a and b of a finite ring Rg.
Side effect: b =a2.

Procedure 41 Multiplication.
void ZENEltMultiply(c, a, b, Rg)
ZENE1t c, a, b;
ZENRing Rg;
Input: Three allocated elements a, b and c of a finite ring Rg.

Side effect: c=a xb.
Note: ACHTUNG !!! One must have ¢ # a. A call to this func-
tion with the same element as parameter ¢ and a can cause

segmentation faults.

Procedure 42 Inverse.
int ZENEltInverse(b, a, Rg)
ZENElt b, a;
ZENRing Rg;

Input: Two allocated elements a and b of a finite ring Rg.
Output: ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-

erwise
Side effect: b = 1/a if a has an inverse, ZENRingFact(Rg) is filled with
a factor of a modulo if ZEN_NO_INVERSE is returned.

Note: One can have b = a

Procedure 43 FExponentiation.
int ZENE1tExp (R, k, k1, P, Rg)
ZENE1lt R, P;
BigNum k;
BigNumLength k1;
ZENRing Rg;

Input: Two allocated elements R and P of a finite ring Rg, a
BigNum k of size kl.
Output: 0 if no error occured, ZENERR otherwise.
Side effect: R = Pk.
Note: The algorithm used is by default the binary method, but after
precomputation, it is the m-ary method.
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Procedure 44 “Trace”.

void ZENEltTrace(b, a, Rg)
ZENEl1t b, a;
ZENRing Rg;

Input: Two allocated elements a and b of a finite ring Rg.
Side effect: b= Tng/R(a) where R is the base ring of Rg. IfRg is Z/nZ
where n is an integer, b = a.

Procedure 45 “Absolute Trace”.

int ZENEltAbsoluteTrace(e, f, Rg)
ZENElt e, f;
ZENRing Rg;

Input: Two allocated elements e and f of a finite ring Rg.
Output: ZENERR if an error occurred, ZEN_HAS_INVERSE other-

wise.
Side effect: f = Tng/(Z/pZ) (e) where p is the characteristic of Rg. If
Rg=Z/pZ, f =e.

Procedure 46 Square roots in finite fields

int ZENEltSquareRoot(R, P, Rg)
ZENElt R, P;
ZENRing Rg;

Input: Two elements R and P of a finite field Rg.
Output: ZENERR if an error occurred, 0 if P is a square, 1 otherwise.
Side effect: R is filled with the square root of P if 0 is returned.
Note: This procedure is valid only in finite fields. The algorithm
of Tonelli and Shanks is used.

4.2.5 Input/Output
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Procedure 47 Converting from string.

int ZENEltReadFromString(G, s, base, Rg)
ZENE1lt G;
char *s;
int base;
ZENRing Rg;

Input: A finite ring Rg, an allocated element G and a string s rep-
resenting a ZENEIt in base base € {2,...,16}.
Output: The number of character read in s or ZENERR if an error
occurred.
Side effect: G is filled with s if the output is not ZENERR.

Procedure 48 Converting to string.

char *ZENE1tPrintToString(G, base, Rg)
ZENE1t G;
int base;
ZENRing Rg;

Input: An allocated element G of a finite ring Rg and a base base €
{2,...,16}.
Output: An allocated string representing G in base base or ZENNULL
if an error occurred.

Procedure 49 Reading from file.

int ZENEltReadFromFile(G, file, base, Rg)
ZENE1t G;
FILE xfile;
int base;
ZENRing Rg;

Input: A stream file, an allocated element G of a finite ring Rg and
a base base € {2,...,16}.
Output: 0 if no error occurred, ZENERR otherwise.
Side effect: G is filled with the ZENEIt read in file if no error occurred.
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Procedure 50 Printing to file.

int ZENEltPrintToFile(file, G, base, Rg)
FILE xfile;
ZENE1lt G;
int base;
ZENRing Rg;

Input: A stream file, an allocated element G of a finite ring Rg and
a base base € {2,...,16}.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Printing a representation of G in base base to file.

Procedure 51 Converting from a string to an internal representation.

int ZENEltGetFromString(G, s, Rg)
char *s;
ZENElt G;
ZENRing Rg;

Input: An allocated element G of a finite ring Rg and a string s
representing a ZENEIt to an internal representation.
Output: The number of character read in s or ZENERR if an error
occurred.
Side effect: G is filled with s

Procedure 52 Converting to string to an internal representation.

char *ZENE1tPutToString(G, Rg)
ZENElt G;
ZENRing Rg;

Input: An allocated element G of a finite ring Rg.
Output: An allocated string representing G to an internal represen-
tation or ZENNULL if an error occurred.

Procedure 53 Getting from file to an internal representation.

int ZENEltGetFromFile(G, file, Rg)
ZENE1lt G;
FILE x*file;
ZENRing Rg;

Input: A stream file, and an element G of a finite ring Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: G is filled with the element read in file
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Procedure 54 Writing to file to an internal representation.

int ZENE1ltPutToFile(file, G, Rg)
FILE *file;
ZENElt G;
ZENRing Rg;

Input: A stream file, an allocated element G of a finite ring Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Printing a representation of G to file.

Procedure 55 Fwvaluating an element as o multivariate polynomial over Z.

void ZENE1tToZ(p, p-pl, G, Rg)
BigNum p;
BigNumLength *p_pl;
ZENE1t G;
ZENRing Rg;

Input: A Bignum p of allocated size greater or equal than
ZENRingQI(Rg), a pointer p_pl on the real size of p, an al-
located element G of a finite ring Rg.

Side effect: p is filled with the value of G considered as a multivariate
polynomial in which we substitute all the variables with the
“characteristic”, xp_pl contains the real size of p.

Procedure 56 Getting an element from its evaluation as a multivariate poly-
nomial over Z.

void ZENZToElt(G, p, pl, Rg)
BigNum p;
BigNumLength pl;
ZENE1lt G;
ZENRing Rg;

Input: A Bignum p of size pl, an allocated element G of a finite
ring Rg.
Side effect: G is filled with the element whose evaluation considered as a
multivariate polynomial in which we substitute all the vari-
ables with the “characteristic” is equal to (p, pl).
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Procedure 57 Clone conversion.

Input:

Side effect:

void ZENE1tToClone(C, B, Rg)
ZENE1lt C,B;
ZENRing Rg;

A ZENEIt B of the original ring of Rg and a ZENER C of
the clone Rg.
C is filled with B.

Procedure 58 Clone conversion.

Input:

Side effect:

void ZENCloneToElt(B, C, Rg)
ZENE1t B,C;
ZENRing Rg;

A ZENEIt B of the original ring of Rg and a ZENER C of
the clone Rg.
B is filled with C.

4.3 Procedures to handle polynomials over fi-
nite rings

These procedures are current operations on polynomials over finite rings.

4.3.1 Allocation
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Procedure 59 Creation.

int ZENPolyAlloc(PX, deg, Rg)
ZENPoly PX;
int deg;
ZENRing Rg;

Input: An unallocated ZENPoly, a finite ring Rg and a degree deg.
Output: ZENERR if an error occured, 0 otherwise
Side effect: The polynomial is allocated together with its deg+1 coeffi-
cients.
Note: All the coefficients of the polynomial are NOT set to
zero. Hence, to create and set a polynomial to anX" +
an_1 X"t + ...+ agy, one will have to:

1. Create a polynomial with ZENPolyAlloc(PX, n, Rg).

2. Set it to X" in order to initialize it with
ZENPolySet ToXi(PX, n, Rg).

3. Set all the non null coefficients a;, 0 < i < n wusing
ZENPolySetCoeff().

Procedure 60 Degree.

int ZENPolyDeg(PX, Rg)
ZENPoly PX;
ZENRing Rg;

Input: An allocated polynomial PX of a finite ring Rg.
Output: The degree of PX.
Note: This procedure is a macro which returns one field of PX.
You can assign ZENPolyDeg(PX, Rg), but beware that all
functions assume this field correct.

Procedure 61 Length.

int ZENPolyLgt (PX, Rg)
ZENPoly PX;
ZENRing Rg;

Input: An allocated polynomial PX of a finite ring Rg.
Output: The maximal degree of PX.
Note: This procedure is a macro which returns one field of PX.
Assigning ZENPolyLgt(PX, Rg) can lead to bugs.
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Procedure 62 Copying an allocated polynomial.

ZENPoly ZENPolyCopy (PX, Rg)
ZENPoly PX;
ZENRing Rg;

Input: An allocated polynomial PX of a finite ring Rg.
Output: ZENNULL if an error occurred, a copy of PX otherwise.

Procedure 63 Freeing.

void ZENPolyFree(PX,Rg)
ZENPoly PX;
ZENRing Rg;

Input: An allocated polynomial PX of a finite ring Rg.
Side effect: PX is disallocated.

4.3.2 Assigning

Procedure 64 Assigning.

void ZENPolyAssign(RX, PX, Rg)
ZENPoly RX, PX;
ZENRing Rg;

Input: Two allocated polynomials PX and RX of a finite ring Rg.
Side effect: RX is filled with PX.

Procedure 65 Setting to zero.

void ZENPolySetToZero(RX, Rg)
ZENPoly RX;
ZENRing Rg;

Input: An allocated polynomial RX of a finite ring Rg.
Side effect: RX is set to zero.
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Procedure 66 Setting to X°.

void ZENPolySetToXi(RX, deg, Rg)
ZENPoly RX;
int deg;
ZENRing Rg;

Input: An allocated polynomial RX of a finite ring Rg allocated at
least for degree deg.

Side effect: RX is set to X9e8,

Procedure 67 Setting randomly.

void ZENPolySetRandom(RX, deg, Rg)
ZENPoly RX;
int deg;
ZENRing Rg;

Input: An allocated polynomial RX of length at least deg of o finite
ring Rg.
Side effect: RX is set randomly to a polynomial of degree deg.

Procedure 68 Setting a coefficient.

void ZENPolySetCoeff(RX, d, b, Rg)
ZENPoly RX;
int d;
ZENE1lt b;
ZENRing Rg;

Input: An initialized polynomial RX of degree greater or equal to
d and an element b of a finite ring Rg, the degree d of the
coefficient to set.
Side effect: The coefficient of X? in RX is set to b.
Note: The degree of RX is NOT updated by this operation.

Procedure 69 Getting a coefficient.

void ZENPolyGetCoeff (b, RX, d, Rg)
ZENE1t b;
ZENPoly RX;
int d;
ZENRing Rg;
Input: An allocated polynomial RX of a finite ring Rg, the degree d

of the coefficient to get and an element b to assign.
Side effect: b is filled with the coefficient of X? in RX.
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Procedure 70 Extracting a coefficient.

ZENE1t ZENPolyGetCoeffPtr(RX, d, Rg)
ZENPoly RX;
int d;
ZENRing Rg;

Input: An allocated polynomial RX of a finite ring Rg, the degree d
of the coefficient to get.
Output: The pointer to the coefficient of X% in RX.
Side effect: You must not disallocate the output.

Procedure 71 Updating the degree of a polynomial.

void ZENPolyUpdateDegree(RX, Rg)
ZENPoly RX;
ZENRing Rg;

Input: An allocated polynomial RX of a finite ring Rg.
Side effect: Resetting the degree of RX, assuming it has decreased.

Procedure 72 Convert.

int ZENPolyConvert(P1, R1, P2, R2)
ZENPoly P1, P2;
ZENRing R1, R2;

Input: Two ZENPolys and two ZENRings.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: The coefficients of P1 of R1 are affected with coefficients of
P2 of R2 after possible modular reduction of those coeffi-
cients. R1 and R2 must be compatible rings.

4.3.3 Test

Procedure 73 FEquality.

int ZENPolyAreEqual (RX, PX, Rg)
ZENPoly RX, PX;
ZENRing Rg;

Input: Two allocated polynomials RX and PX of a finite ring Rg.
Output: The predicate RX = PX.
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Procedure 74 Is zero.

int ZENPolyIsZero(RX, Rg)
ZENPoly RX;
ZENRing Rg;

Input: An allocated polynomial RX of a finite ring Rg.
Output: The predicate RX = 0.

Procedure 75 Is a polynomial equal to X°.

int ZENPolyIsXi (PX, deg, Rg)
ZENPoly PX;
int deg;
ZENRing Rg;

Input: An allocated polynomial PX of a finite ring Rg and a degree
deg.
Output: The predicate PX = X deg

4.3.4 Arithmetic

Procedure 76 Addition.

void ZENPolyAdd(RX, PX, Rg)
ZENPoly RX, PX;
ZENRing Rg;

Input: Two allocated polynomials RX and PX of a finite ring Rg.
Side effect: RX+ =PX.

Procedure 77 Negation.

void ZENPolyNegate(RX, PX, Rg)
ZENPoly RX, PX;
ZENRing Rg;

Input: Two allocated polynomials RX and PX of a finite ring Rg.
Side effect: RX = —PX.
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Procedure 78 Subtraction.

void ZENPolySubtract(RX, PX, Rg)
ZENPoly RX, PX;
ZENRing Rg;

Input: Two allocated polynomials RX and PX of a finite ring Rg.
Side effect: RX— =PX.

Procedure 79 Squaring.

int ZENPolySquare(RX, PX, Rg)
ZENPoly RX, PX;
ZENRing Rg;

Input: Two allocated polynomial RX and PX of a finite ring Rg.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: RX = PX2.

Procedure 80 Multiplication.

int ZENPolyMultiply(RX, PX, QX, Rg)
ZENPoly RX, PX, QX;
ZENRing Rg;

Input: Three allocated polynomial RX, PX and QX of a finite ring
Rg.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: RX =PX x QX.
Note: One must have RX # PX. The Karatsuba’s algorithm is
always used.

Procedure 81 Multiplication by a scalar.

void ZENPolyMultiplyScalar(RX, PX, e, Rg)
ZENPoly RX, PX;
ZENE1t e;
ZENRing Rg;

Input: Two polynomials PX, RX and an element e of a finite ring
Rg.
Note: RX =ePX.
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Procedure 82 Scalar product.
void ZENPolyDot(e, PX, QX, Rg)
ZENE1t e;
ZENPoly PX, QX;
ZENRing Rg;
Input: Two polynomials PX, RX and an allocated element e of a
finite ring Rg.
Side effect: e = ) p;q; where p; and ¢; are the coefficients of PX and
QX.

Procedure 83 FEuvaluation.

void ZENPolyEval(f, PX, e, Rg)
ZENElt f, e;
ZENPoly PX;
ZENRing Rg;

Input: A polynomial PX and two elements f and e of a finite ring
Rg.
Side effect: f=PX(e).

Procedure 84 Make a polynomial monic.
int ZENPolyMakeMonic (RX, PX, Rg)
ZENPoly RX, PX;
ZENRing Rg;
Input: Two polynomials PX and RX of a finite ring Rg.
Output: ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-

erwise
Side effect: R(X) is filled with P(X) divided by its highest coefficient.

Procedure 85 Divide.
int ZENPolyDivide(RX, MX, PX, QX, Rg)
ZENPoly RX, MX, PX, QX;
ZENRing Rg;
Input: Two polynomials PX and QX to divide in a finite ring Rg.
RX will be the quotient and MX the remainder.
Output: ZEN_HAS_INVERSE if no error occurred, ZEN_NO_INVERSE
if a factor of a modulo was discovered, ZENERR for an error
Side effect: RX is filled with the euclidian quotient of PX by QX, MX
with the remainder of PX by QX.
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Procedure 86 Gcd of 2 polynomials.

int ZENPolyGcd (RX, PX, QX, Rg)
ZENPoly RX, PX, QX;
ZENRing Rg;

Input: Three polynomials PX, QX and RX of a finite ring Rg.
Output: ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-
erwise
Side effect: R(X) = ged(P(X),Q(X)) if ZEN_HAS_INVERSE is returned,
ZENRingFact(Rg) is filled with a factor of a modulo if
ZEN_NO_INVERSE is returned.

Procedure 87 Extended gcd of 2 polynomials.

int ZENPolyExtGed (IXO, BXO, AXO, Rg)
ZENPoly IXO, AXO, BXO;
ZENRing Rg;

Input: Three polynomials 1X0, AX0 and BX0 of a finite ring Rg.
Output: ZENERR if an error occurred, -2 if the ged of AXO and BXO0 is
not 1, ZEN_NO_INVERSE if a factor of a modulo was found,
ZEN_HAS_INVERSE otherwise
Side effect: IX0= 1/BX0 mod AXO if ZEN_HAS_INVERSE is returned,
IX0 is ged(AX0, BX0) if -2 is returned, ZENRingFact(Rg)
is filled with a factor of a modulo if ZEN_NO_INVERSE is
returned.

Procedure 88 Resultant of 2 polynomials.

int ZENPolyResultant(Res, A, B, Rg)
ZENE1t Res;
ZENPoly A, B;
ZENRing Rg;

Input: Three polynomials xRes, A and B of a finite ring Rg.
Output: ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-
erwise
Side effect: *Res(X) = resultant(A(X),B(X)) if ZEN_.HAS_INVERSE is
returned, ZENRingFact(Rg) is filled with a factor of a modulo
if ZEN_.NO_INVERSE is returned.
Note: Computation of the resultant of two polynomials by the sub-
resultant algorithm. From P. Gaudry.
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4.3.5 Input/Output

Procedure 89 Conwverting from string.

int ZENPolyReadFromString(PX, s, base, Rg)

Input:
Output:

Side effect:
Note:

ZENPoly PX;
char *s;
int base;
ZENRing Rg;

A finite ring Rg, an unallocated polynomial PX and a string
s representing a polynomial in base base€ {2,...,16}.

The number of character read in s or ZENERR if an error
occurred.

PX is allocated and filled with s if the output is not ZENERR
Maple’s format is used. The biggest monomial must be at
the beginning of the string

Procedure 90 Converting to string.

char *ZENPolyPrintToString(PX, base, Rg)

ZENPoly PX;
int base;
ZENRing Rg;

Input: An allocated polynomial PX of a finite ring Rg and a base
basec {2,...,16}.
Output: An allocated string representing PX in base base or
ZENNULL if an error occurred.
Note: Maple’s format is used.

Procedure 91 Reading from file.

int ZENPolyReadFromFile(PX, file, base, Rg)
ZENPoly PX;
FILE xfile;
int base;
ZENRing Rg;

Input:

Output:
Side effect:

Note:

A stream file and an unallocated polynomial PX of a finite
ring Rg.

0 if no error occurred, ZENERR otherwise.

PX is allocated and filled with the polynomial read in file if
no error occurred.

Maple’s format is used. The biggest monomial must be at
the beginning of the stream
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Procedure 92 Printing to file.

int ZENPolyPrintToFile(file, PX, base, Rg)

Input:

Output:
Side effect:
Note:

FILE *file;
ZENPoly PX;
int base;

ZENRing Rg;

A stream file, an allocated polynomial PX of a finite ring Rg
and a base base€ {2,...,16}.

ZENERR if an error occurred, 0 otherwise.

Printing a representation of PX in base base to file.
Maple’s format is used.

Procedure 93 Converting from a string to an internal representation.

Input:

Output:

Side effect:

int ZENPolyGetFromString(PX, s, Rg)

char *s;
ZENPoly PX;
ZENRing Rg;

An unallocated polynomial PX of a finite ring Rg and a
string s representing a polynomial to an internal represen-
tation.

The number of character read in s or ZENERR if an error
occurred.

PX is allocated and filled with s if the output is different from
ZENERR

Procedure 94 Converting to string to an internal representation.

char *ZENPolyPutToString(PX, Rg)
ZENPoly PX;
ZENRing Rg;

Input: An allocated polynomials PX of a finite ring Rg.
Output: An allocated string representing PX to an internal represen-
tation or ZENNULL if an error occurred.
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Procedure 95 Getting from file to an internal representation.

int ZENPolyGetFromFile(PX, file, Rg)
ZENPoly PX;
FILE *file;
ZENRing Rg;

Input: A stream file, and an unallocated polynomial PX of a finite
ring Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: PX is filled with the polynomial read in file

Procedure 96 Writing to file to an internal representation.

int ZENPolyPutToFile(file, PX, Rg)
FILE xfile;
ZENPoly PX;
ZENRing Rg;

Input: A stream file, an allocated polynomial PX of a finite ring Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Printing a representation of PX to file.

Procedure 97 Compute the derivative of a polynomial

int ZENPolyDerive(RX,PX,Rg)
ZENPoly RX,PX;
ZENRing Rg;

Input: Two polynomial RX and PX defined over a finite ring Rg.
Output: ZENERR if an error occured, 0 otherwise
Side effect: RX =PX'.
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Procedure 98 Roots of a polynomial of degree 2 in finite fields

int ZENPolyRootsDegree2(roots, P, Rg)
ZENPoly roots, P;
ZENRing Rg;

Input: Two ZENPoly P and roots over a ZENRing Rg.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,
ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: The polynomial roots is set to a polynomial of degree -1, 0
or 1, the coefficients of which are the roots of P.
Note: roots must be allocated for at least degree 1. We must have
P # roots. Valid only in finite fields.

Procedure 99 Roots of X — XP =1.

int ZENPolyRootsCanonical(roots, gamma, Rg)
ZENPoly roots;
ZENE1t gamma;
ZENRing Rg;

Input: A ZENPoly roots over a ZENRing Rg and an element a.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,

ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: The polynomial roots is set to a polynomial of degree -1 or
p =charateristic(Rg), the coefficients of which are the roots
of P.
Note: P must be allocated for at least degree p — 1. We must have
P # roots. Valid only in finite fields.
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Procedure 100 Getting a BigNum from a Polynomial.

BigNum ZENPolyToZ(p_pl, P, Rg)
BigNumLength *p_pl;

ZENPoly P;
ZENRing Rg;
Input: A pointer on an integer p_pl, and a polynomial P of a
ZENRing Rg.
Output: A BigNum of size xp_pl if no error occured, ZENNULL oth-
erwise.

Procedure 101 Getting a polynomial from a BigNum.

ZENPoly ZENZToPoly(p, pl, Rg)
BigNum p;
BigNumLength pl;
ZENRing Rg;

Input: A BigNum (p, pl) and a finite Ring Rg.
Output: ZENNULL if an error occured, otherwise a polynomial which
once, evaluated in ZENRingQ(Rg), returns (n, nl).

4.4 Procedures to handle matrices over finite
rings.

4.4.1 Parameters of a matrix

Procedure 102 Testing type of a matriz

int ZENMatIsRowType(M,R)
ZENMat M;
ZENRing R;

Input: A ZENMat and a ZENRing
Output: 1 if the matriz is of Row type, 0 if it is of Col type
Note: Permutation matrices can be used.

Procedure 103 Testing type of a matriz

int ZENMatIsPermutation(M,R)
ZENMat M;
ZENRing R;

Input: A ZENMat and a ZENRing
Output: 1 if the matriz is o permutation, 0 if it is a plain matriz
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Procedure 104 Testing type of a matriz

int ZENMatAreSameType(A,B,R)
ZENMat A,B;
ZENRing R;

Input: Two ZENMats and a ZENRing
Output: 1 if the matriz are of same type, 0 otherwise.
Note: This function checks also if the matriz is permutation or
plain.

Procedure 105 Number of rows of a matrix

Dim ZENMatNbRow(M,R)
ZENMat M;
ZENRing R;

Input: A ZENMat and a ZENRing
Output:  The number of rows of the matrix

Procedure 106 Number of columns of a matriz

Dim ZENMatNbCol(M,R)
ZENMat M;
ZENRing R;

Input: A ZENMat and a ZENRing
Output: The number of columns of the matriz

4.4.2 Allocation

Procedure 107 Allocation of a matrix

int ZENMatAlloc(M,r,c,R)
ZENMat M;
Dim r,c;
ZENRing R;

Input: An unallocated matriz M, o number of rows r, a number of
columns ¢ greater than 0 and a ZENRing.
Output: ZENERR if an error occured, 0 otherwise
Side effect: Matriz M is allocatedd together with r rows and ¢ columns.
Note: The type of the matrix is chosen to minimize the memory
needed.




4.4. MATRICES

57

Procedure 108 Allocation of a matrixz

Input:

Output:
Side effect:

int ZENMatRowAlloc(M,r,c,R)
ZENMat M;
Dim r,c;
ZENRing R;

An unallocated matriz M, o number of rows r, a number of
columns ¢ greater than 0 and a ZENRing.

ZENERR if an error occured, 0 otherwise

The matriz is allocated ZENMat with type ZENMatTypeRow
with r rows and c columns.

Procedure 109 Allocation of a matrix

Input:

Output:
Side effect:

int ZENMatColAlloc(M,r,c,R)
ZENMat M;
Dim r,c;
ZENRing R;

An unallocated matriz M, o number of rows r, a number of
columns ¢ greater than 0 and a ZENRing.

ZENERR if an error occured, 0 otherwise

The matriz is allocated ZENMat with type ZENMatTypeCol
with r rows and ¢ columns.

Procedure 110

Input:

Output:
Side effect:

Note:

Allocation of a permutation matric

int ZENPermutationRowAlloc(PI,n,R)

ZENMat PT;
Dim n;
ZENRing R;

An wunallocate ZENMat, a size r greater than 0 and a
ZENRing.

ZENERR if an error occured, 0 otherwise

Matriz Pl is allocated with type ZENPermutationTypeRow
with v rows and r columns.

The matrixz is set to identity
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Procedure 111 Allocation of a permutation matriz

int ZENPermutationColAlloc(PI,n,R)

ZENMat PI;
Dim n;
ZENRing R;

Input: An wunallocate ZENMat, a size r greater than 0 and a
ZENRing.
Output: ZENERR if an error occured, 0 otherwise
Side effect: Matrix Pl is allocated with type ZENPermutationTypeCol
with r rows and r columns.
Note: The matriz is set to identity

Procedure 112 Freeing a matriz

void ZENMatFree(M,R)
ZENMat M;
ZENRing R;

Input: A ZENMat and o ZENRing
Side effect: The matriz is freed
Note: Permutation matrices can be used

Procedure 113 Copying a matriz

ZENMat ZENMatCopy(M,R)
ZENMat M;
ZENRing R;

Input: A ZENMat and a ZENRing
Output: A plain ZENMat copied from M of same type, or ZENNULL
if an error occured.
Note: Permutation matriz can be input, but the output is a plain
matriz.

4.4.3 Assigning
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Procedure 114 Assigning a matriz to another matriz

Input:
Output:
Side effect:
Note:

int ZENMatAssign(A,B,R)
ZENMat A,B;
ZENRing R;

Two ZENMat and a ZENRing
ZENERR if an error occured, 0 otherwise.
A=B.

B can be a permutation matriz. In this case, A can be either
a permutation matrix or a plain matriz. Otherwise, it must

be a plain matriz.

Procedure 115

Input:
Output:
Side effect:
Note:

Assigning to zero

int ZENMatSetToZero(M,R)
ZENMat M;
ZENRing R;

A ZENMat and a ZENRing

ZENERR if an error occured, 0 otherwise.
M=0.

M must be a plain matriz.

Procedure 116

Input:
Output:
Side effect:
Note:

Assigning to identity

int ZENMatSetToOne(M,R)
ZENMat M;
ZENRing R;

A ZENMat and o ZENRing

ZENERR if an error occured, 0 otherwise.
M; ; = d;;, with § the Kronecker’s symbol.
Permutation matriz can be used.

Procedure 117 Assigning randomly

Input:
Output:
Side effect:
Note:

int ZENMatSetRandom(M,R)
ZENMat M;
ZENRing R;

A ZENMat and o ZENRing

ZENERR if an error occured, 0 otherwise.
The matriz is randomly set.

Permutation matriz can be used.
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Procedure 118 Assigning a coefficient

Input:
Output:
Side effect:
Note:

int ZENMatSetCoeff(M,r,c,Z,R)
ZENMat M;
Dim r,c;
ZENElt Z;
ZENRing R;

A ZENMat, two indezes, a ZENEIt and o ZENRing.
ZENERR if an error occured, 0 otherwise.
Mrc=2

Permutation matriz can be used.

Procedure 119

Input:

Output:
Side effect:
Note:

Getting a coefficient

int ZENMatGetCoeff(Z,M,r,c,R)
ZENElt Z;
ZENMat M;
Dim r,c;
ZENRing R;

An allocated ZENEI, o ZENMat, two indexes and a
ZENRing.

ZENERR if an error occured, 0 otherwise.

7 = Mr,c

Permutation matriz can be used.

Procedure 120

Input:
Output:
Side effect:
Note:

Assigning a submatriz

int ZENMatSetSubMat(M,r,c,S,R)
ZENMat M,S;
Dim r,c;
ZENRing R;

Two ZENMat, two indexes, a ZENEIt and o ZENRing.
ZENERR if an error occured, 0 otherwise.

The matriz S is assigned at position (r,c) in matriz M.
Permutation matriz cannot be used.




4.4. MATRICES 61

Procedure 121 Getting a submatriz

int ZENMatGetSubMat(S,M,r,c,R)
ZENMat M,S;
Dim r,c;
ZENRing R;

Input: Two allocated ZENMat, two indezes and a ZENRing.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: The submatriz of M at position (r,c) of size those of S is
extracted and assigned to S.
Note: Permutation matriz cannot be used.

Procedure 122 Getting a coefficient pointer

int ZENMatGetCoeffPtr(M,r,c,R)
ZENMat M;
Dim r,c;
ZENRing R;

Input: A ZENMat, two indexes and o ZENRing.
Output: A pointer on My c.
Note: Do NOT wuse the result of this function to change
the coefficient of the matriz. This may not work.
Use ZENMatSetCoeff instead. In the same way, do
NOT assign the result of this function directly (like
z = ZENMatGetCoeffPtr();) because further assignments
such as ZENEltAssign(z, x, Rg) may modify the initial co-
efficient of the matrixz. Use ZENMatGetCoeff instead. This
function is intended to do fast read-only access to the coef-
ficients of a matriz.

4.4.4 Permuting rows or columns

Procedure 123 Permute rows

int ZENMatPermuteRow(M,r1,r2,R)
ZENMat M;
Dim r1,r2;
ZENRing R;

Input: A ZENMat, two indezes and o ZENRing.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: Rows rl and r2 are permuted.
Note: ZENMatTypeRowPermutation can be used.




62 CHAPTER 4. ENUMERATING THE FUNCTIONS OF ZEN

Procedure 124 Permute columns

int ZENMatPermuteCol(M,cl1,c2,R)
ZENMat M;
Dim c1,c2;
ZENRing R;

Input: A ZENMat, two indezes and a ZENRing.

Output: ZENERR if an error occured, 0 otherwise.
Side effect: Rows cl and c2 are permuted.

Note: ZENMatTypeColPermutation can be used.

4.4.5 Tests

Procedure 125 Equality

int ZENMatAreEqual(A,B,R)
ZENMat A,B;
ZENRing R;

Input: Two ZENMat and o ZENRing
Output: A ==B.
Note: Permutation matrices can be used.

Procedure 126 FEquality to zero

int ZENMatIsZero(M,R)
ZENMat M;
ZENRing R;

Input: A ZENMat and a ZENRing
Output: M ==0

Procedure 127 Equality to identity

int ZENMatIsOne(M,R)
ZENMat M;
ZENRing R;

Input: A ZENMat and a ZENRing
Output: == Identity.
Note: The matriz is checked to be square.
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4.4.6 Arithmetic

Procedure 128 Addition

Input:
Output:
Side effect:
Note:

int ZENMatAdd(A,B,R)
ZENMat A,B;
ZENRing R;

Two ZENMat and a ZENRing

ZENERR if an error occured, 0 otherwise.
A+=B

B can be a permutation.
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Procedure 129

Input:
Output:
Side effect:
Note:

Addition of a scalar

int ZENMatAddScalar(A,b,R)
ZENMat A;
ZENE1t b;
ZENRing R;

A ZENMat, a ZENEIt and a ZENRing
ZENERR if an error occured, 0 otherwise.
All the elements of A are incremented by b
A cannot be a permutation.

Procedure 130

Input:
Output:
Side effect:
Note:

Negation

int ZENMatNegate(A,B,R)
ZENMat A,B;
ZENRing R;

Two ZENMat and a ZENRing

ZENERR if an error occured, 0 otherwise.
A= -B.

B can be a permutation.

Procedure 131

Input:
Output:
Side effect:
Note:

Subtraction
int ZENMatSubtract(A,B,R)
ZENMat A,B;
ZENRing R;

Two ZENMat and a ZENRing

ZENERR if an error occured, 0 otherwise.
A-=B

B can be a permutation.
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Procedure 132 Multiplication

Input:
Output:
Side effect:
Note:

int ZENMatMultiply(X,A,B,R)
ZENMat X,A,B;
ZENRing R;

Three ZENMat and a ZENRing

ZENERR if an error occured, 0 otherwise

X = AB.

A can be a ZENMatTypeRowPermutation and B can be a
ZENMatTypeColPermutation. One can have A=B but X
must be distinct from A and B.

Procedure 133

Input:
Output:
Side effect:
Note:

Multiplication of a scalar

int ZENMatMultiplyScalar(A,b,R)
ZENMat A;
ZENEl1t b;
ZENRing R;

A ZENMat, o ZENEIt and o ZENRing
ZENERR if an error occured, 0 otherwise.
All the elements of A are multiplied by b
A cannot be a permutation.

Procedure 134

Input:
Output:
Side effect:
Note:

Multiplication

int ZENMatMultiplyPlain(X,A,B,R)
ZENMat X,A,B;
ZENRing R;
Three ZENMat and a ZENRing
ZENERR if an error occured, 0 otherwise
X = AB.
Permutation cannot be used. The classical algorithm is used.

Procedure 135

Input:
Output:
Side effect:
Note:

Multiplication

int ZENMatWinograd(X,A,B,R)
ZENRing R;
Three ZENMat and a ZENRing
ZENERR if an error occured, 0 otherwise
X = AB.
Permutation cannot be used. Winograd’s algorithm is used.
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Procedure 136 Gaussian elimination

int ZENMatGaussPlain(D,S,P,p_rk,R)
ZENMat D,S,P;
Dim *p_rk;
ZENRing R;

Input: Three ZENMat a pointer on a dimension and a ZENRing
Output: ZENERR if an error occurred, ZENRingFact(Rg) is filled
with a factor of a modulo if ZEN_NO_INVERSE is returned,
ZENMAT_HAS_MAXIMAL_RANK if the matriz is of maxi-
mal rank, ZENMAT_HAS_KERNEL otherwise.
Side effect: D is diagonalised. S and P are modified accordingly (see
below). xp_rk is set to the rank of the matriz D.
Note:

e IfD is ar x c ZENMat of type TypeRow, then S must
be a r x r ZENMat of type TypeRow and P a ¢ X ¢
ZENMat of type TypeCol, or a TypeColPermutation
ZENMat of size c. Then, D is diagonalized on its rows
and ST1DP~! remains invariant.

e IfD is a r xc ZENMat of type TypeCol, then S must be
a ¢ x ¢ ZENMat of type TypeCol and P a r xr ZENMat
of type TypeRow, or a TypeRowPermutation ZENMat
of size r. Then, D is diagonalized on its columns and
P~ 'DS™! remains invariant.

A tricky feature is also possible, but should be used with
care: it is possible to change the ZENMatNbDigit(D,R) field
of D before calling a gaussian elimination procedure. The
gaussian elimination will therefore be performed only on the
specified number of digits, but the corresponding modifica-
tions are done on all the matriz, whose real size is known
through ZENMatNbBloc(D,R). This allows partial trigonali-
ation if needed. Don’t forget to reset the correct value after
the call.
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Procedure 137 Rank of a matriz

Input:
Output:

Side effect:

int ZENMatRank(D,prk,R)
ZENMat D;
Dim *p_rk;
ZENRing R;

A ZENMat a pointer on a dimension and a ZENRing
ZENERR if an error occurred, ZENRingFact(Rg) is filled
with a factor of a modulo if ZEN_NO_INVERSE is returned,
ZENMAT _HAS_MAXIMAL_RANK if the matriz is of maxi-
mal rank, ZENMAT_HAS_KERNEL otherwise.

*p_rk is set to the rank of the matriz D.

Procedure 138

Input:
Output:

Side effect:

Determinant of a matriz

int ZENMatDet(D,det,R)
ZENMat D;
ZENElt det;
ZENRing R;

A ZENMat an allocated ZENEIt and o ZENRing

ZENERR if an error occurred, ZENRingFact(Rg) is filled
with a factor of a modulo if ZEN_NO_INVERSE is returned,
ZENMAT _HAS_INVERSE otherwise.

*p_det is set to the determinant of the matriz D.

Procedure 139

Input:
Output:

Side effect:

Note:

Inverse

int ZENMatInverse(I,M,R)
ZENMat I,M;
ZENRing R;

Two ZENMat and a ZENRing

ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-
erwise.

| = M~'. ZENRingFact(Rg) is filled with a factor of a mod-
ulo if ZEN_NO_INVERSE is returned.

I and M must be different but can be permutations.
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Procedure 140 Kernel

Input:

Output:

Side effect:

Note:

int ZENMatKernel (K,M,R)
ZENRing R;

An wunallocated ZENMat, an allocated ZENMat and o
ZENRing

ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-
erwise.

K is allocated and set to a basis of the kernel of M. One
has MK® = 0. ZENRingFact(Rg) is filled with a factor of a
modulo if ZEN_NO_INVERSE is returned.

K can be returned set to zero.

Procedure 141

Input:
Side effect:
Note:

Transpose

void ZENMatTranspose (M,R)
ZENMat M;
ZENRing R;

A ZENMat and a ZENRing.
The matrix is transposed
Permutation matrixz can be used

4.4.7 Input/output

Procedure 142 Printing to string

char *ZENMatPrintToString(r,base,Rg)

ZENMat r;
int base;
ZENRing Rg;

Input: A ZENMat, an integer between 2 and 16 and a ZENRing.
Output: ZENNULL if an error occured, a string representing r in base
base otherwise
Note: Permutation matrices will be written as plain matrices.
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Procedure 143 Reading from string

int ZENMatReadFromString(r,s,base,Rg)

Input:
Output:

Side effect:

ZENMat r;
char *s;
int base;
ZENRing Rg;

An unallocated ZENMat, a string, an integer between 2 and
16 and o ZENRing.

ZENERR if an error occured, the number of read characters
otherwise

The matriz is allocated and read from string s in base base.

Procedure 144 Printing to file

int ZENMatPrintToFile(file,r,base,Rg)

FILE *file;
ZENMat r;
int base;
ZENRing Rg;

Input: A file, a ZENMat, an integer between 2 and 16 and a
ZENRing.
Output: ZENERR if an error occured, 0 otherwise
Note: Permutation matrices will be written as plain matrices.

Procedure 145 Reading from file

int ZENMatReadFromFile(r,file,base,Rg)

Input:

Output:
Side effect:

ZENMat r;
FILE *file;
int base;
ZENRing Rg;

An unallocated ZENMat, a file, an integer between 2 and 16
and a ZENRing.

ZENERR if an error occured, 0 otherwise

The matrix is allocated and read from file file in base base.
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Procedure 146 Printing to string in internal format

int ZENMatPutToString(r,Rg)
ZENMat r;
ZENRing Rg;

Input: A ZENMat, and o ZENRing.
Output: ZENNULL if an error occured, o string representing r other-
wise
Note: Permutation matrices cannot be used.

Procedure 147 Reading from string in internal format

int ZENMatGetFromString(r,s,Rg)
ZENMat r;
char *s;
ZENRing Rg;

Input: An unallocated ZENMat, a string, and a ZENRing.
Output: ZENERR if an error occured, the number of read characters
otherwise
Side effect: The matriz is allocated and read from string s.

Procedure 148 Printing to file in internal format

int ZENMatPutToFile(file,r,Rg)
FILE *file;
ZENMat r;
ZENRing Rg;

Input: A file, a ZENMat, and o ZENRing.
Output: ZENERR if an error occured, 0 otherwise
Note: Permutation matrices cannot be used.

Procedure 149 Reading from file

int ZENMatGetFromFile(r,file,Rg)
ZENMat r;
FILE *file;
ZENRing Rg;

Input: An unallocated ZENMat, a file, and a ZENRing.
Output: ZENERR if an error occured, 0 otherwise
Side effect: The matriz is allocated and read from file file.
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4.4.8 Matrix conversion

The following functions are intended to allow conversion of matrices between an
extension and its definition ZENRing.

Procedure 150 Simple assignment

int ZENMatConvert(M1,R1,M2,R2)
ZENMat M1,M2;
ZENRing R1,R2;

Input: Two couples (ZENMat, ZENRing).
Output: ZENERR if an error occured, 0 otherwise.
Side effect: Matrix M1 is assigned with M2.
Note: The coefficients of M2 must be elements of R1. The two
matrices must be of same sizes.

Now consider the following example: given a vector defined over F -
-1
Qag,0 + o1 % + - + ao,n_lx"
m =
n—1

ak—1,0 + Ap—1,1T + -+ + Ag—1,n-1T

we have two matrices over I, that we can need to consider:

ap,0

ag,1

ag,0 ag,1 ag,n—1 ag,n—1

M1 = : : : and M2 = .
ag—-1,0 Qk-1,1 - Qg—1,n—1 ak—1,0

ar—1,1
Qk—1,n—1

The following functions allow such conversion. The principle is that if the input
matrix on, say Fy, is of row type the conversion will give a M1 type matrix.
Otherwise, it will be a M2 type matrix. Sizes of the matrices must be chosen
accordingly.

Procedure 151 Ezxtension conversion
int ZENVect2Mat (m,M,R)
ZENMat M,m;
ZENRing R;

Input: Two matrices ZENMat and an extension ZENRing.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: Matriz M is assigned with m.
Note: If the ZENRing is not an extension, this is equivalent to
ZENMatAssign.




4.5. SERIES 71

Procedure 152 Extension conversion

int ZENMat2Vect(M,m,R)
ZENMat M,m;
ZENRing R;

Input: Two matrices ZENMat and an extension ZENRing.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: Matriz m is assigned with M.
Note: If the ZENRing is not an extension, this is equivalent to
ZENMatAssign.

4.5 Procedures to handle series over finite rings

These procedures are current operations on series over finite rings.

4.5.1 Allocation

Procedure 153 Creation.

int ZENSrAlloc(S,length, Rg)
ZENSTr S;
int length;
ZENRing Rg;

Input: An unallocated series, a finite ring Rg and a length length.
Output: ZENERR if an error occured, 0 otherwise
Side effect: The series is allocated with EXACTLY length allocated co-
efficients.
Note: The series IS NOT set to zero.

Procedure 154 Degree.

int ZENSrDeg(PX, Rg)
ZENSr PX;
ZENRing Rg;

Input: An allocated series PX of a finite ring Rg.
Output: The degree of PX.
Note: This procedure is a macro which returns one field of PX.
You can assign ZENSrDeg(PX, Rg).




72

Procedure 155 Valuation.

int ZENSrVal(PX, Rg)
ZENSr PX;
ZENRing Rg;

Input: An allocated series PX of a finite ring Rg.
Output: The valuation of PX.

Note: This procedure is a macro which returns one field of PX.

You can assign ZENSrVal(PX, Rg)

Procedure 156 Length.

BigNum ZENSrLgt(PX, Rg)

ZENSr PX;
ZENRing Rg;
Input: An allocated series PX of a finite ring Rg.
Output:

The mazimal size of PX,
degree(PX)-valuation(PX).

This procedure is a macro which returns one field of PX.

ie the maximal difference
Note:

Procedure 157 Copying an allocated series.

ZENSr ZENSrCopy (PX, Rg)

ZENSr PX;
ZENRing Rg;
Input: An allocated series PX of a finite ring Rg.
Output:

ZENNULL if an error occurred, a copy of PX otherwise.

Procedure 158 Freeing.

void ZENSrFree(PX,Rg)
ZENSr PX;
ZENRing Rg;

Input: An allocated series PX of a finite ring Rg.
Side effect: PX is disallocated.
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4.5.2 Assigning

Procedure 159 Assigning.

void ZENSrAssign(RX, PX, Rg)
ZENSr RX, PX;
ZENRing Rg;

Input: Two allocated series PX and RX of a finite ring Rg.
Side effect: RX is filled with PX.

Procedure 160 Setting to zero.

void ZENSrSetToZero(RX, Rg)
ZENST RX;
ZENRing Rg;

Input: An allocated series RX of a finite ring Rg.
Side effect: RX is set to zero.

Procedure 161 Setting to random.

void ZENSrSetRandom(RX, val, deg, Rg)
ZENSr RX;
int deg;
ZENRing Rg;

Input: An allocated series RX, a valuation val, a degree deg and a
finite ring Rg.
Side effect: RX is set randomly to a series of valuation val and degree
deg.

Procedure 162 Setting a coefficient.

void ZENSrSetCoeff(RX, d, b, Rg)
ZENSr RX;
int d;
ZENE1t b;
ZENRing Rg;

Input: An allocated series RX and an element b of a finite ring Rg,
the degree d of the coefficient to set.
Side effect: The coefficient of X? in RX is set to b.
Note: The degree or valuation of RX is not recomputed.
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Procedure 163 Getting a coefficient.

void ZENSrGetCoeff(b, RX, d, Rg)
ZENE1t b;
ZENSr RX;
int d;
ZENRing Rg;
Input: An allocated series RX of a finite ring Rg, the degree d of

the coefficient to get and an element b to assign.
Side effect: b is filled with the coefficient of X¢ in RX.

Procedure 164 Extracting a coefficient.

ZENE1t ZENSrGetCoeffPtr(RX, d, Rg)
ZENSr RX;
int d;
ZENRing Rg;

Input: An allocated series RX of a finite ring Rg, the degree d of
the coefficient to set.
Output: The pointer to the coefficient of X¢ in RX.
Side effect: You must not disallocate the output.

Procedure 165 Updating valuation.

void ZENSrUpdateValuation(RX, Rg)
ZENSr RX;
ZENRing Rg;

Input: An allocated series RX of a finite ring Rg.
Side effect: The valuation is updated if it increased.

4.5.3 Test

Procedure 166 FEgquality.

int ZENSrAreEqual (RX, PX, Rg)
ZENSr RX, PX;
ZENRing Rg;

Input: Two allocated series RX and PX of a finite ring Rg.
Output: The predicate RX = PX.
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Procedure 167 Is zero.

int ZENSrIsZero(RX, Rg)
ZENST RX;
ZENRing Rg;

Input: An allocated series RX of a finite ring Rg.
Output: The predicate RX = 0.
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4.5.4 Arithmetic

Procedure 168 Addition.

void ZENSrAdd(RX, PX, Rg)
ZENSr RX, PX;
ZENRing Rg;

Input: Two allocated series RX and PX of a finite ring Rg.
Side effect: RX+ = PX.

Procedure 169 Negation.

void ZENSrNegate(RX, PX, Rg)
ZENSr RX, PX;
ZENRing Rg;

Input: Two allocated series RX and PX of a finite ring Rg.
Side effect: RX = —PX.

Procedure 170 Subtraction.

void ZENSrSubtract(RX, PX, Rg)
ZENSr RX, PX;
ZENRing Rg;

Input: Two allocated series RX and PX of a finite ring Rg.
Side effect: RX— = PX.
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Procedure 171 Squaring.

int ZENSrSquare(RX, PX, Rg)
ZENSr RX, PX;
ZENRing Rg;

Input: Two allocated series RX and PX of a finite ring Rg.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: RX = PX”.

Procedure 172 Multiplication.

int ZENSrMultiply(RX, PX, QX, Rg)
ZENSr RX, PX, QX;
ZENRing Rg;

Input: Three allocated series RX, PX and QX of a finite ring Rg.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: RX =PX x QX.
Note: One must have RX # PX.

Procedure 173 Multiplication by a scalar.

void ZENSrMultiplyScalar(RX, PX, e, Rg)
ZENSr RX, PX;
ZENElt e;
ZENRing Rg;

Input: Two series PX, RX and an element e of a finite ring Rg.
Side effect: RX =ePX.

Procedure 174 Divide.

int ZENSrDivide(RX, PX, QX, Rg)
ZENSr RX, PX, QX;
ZENRing Rg;

Input: Two series PX and QX to divide in a finite ring Rg. RX will
be the quotient.
Output: ZEN_HAS_INVERSE if no error occurred, ZEN_NO_INVERSE
if a factor of a modulo was discovered, ZENERR for an error
Note: One must have valuation(PX) > valuation(QX) and RX #
QX. Call eventually ZENSrUpdateValuation(QX, Rg) to get
the real valuation of QX
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4.5.5 Input/Output

Procedure 175 Converting from string.

int ZENSrReadFromString(PX, s, base, Rg)

Input:
Output:

Side effect:
Note:

ZENSr PX;
char *s;
int base;
ZENRing Rg;

A finite ring Rg, an unallocated series PX and a string s
representing a series in base base€ {2,...,16}.

The number of character read in s or ZENERR if an error
occurred.

PX is allocated and filled with s if the output is not ZENERR.
Maple’s format is used. The biggest monomial must be at
the beginning of the string

Procedure 176 Converting to string.

char *ZENSrPrintToString(PX, base, Rg)

Input:
Output:

Note:

ZENSr PX;
int base;
ZENRing Rg;

An allocated series PX of a finite ring Rg and a base basee
{2,...,16}.

An allocated string representing PX in base base or
ZENNULL if an error occurred.

Maple’s format is used.

Procedure 177

Reading from file.

int ZENSrReadFromFile(PX, file, base, Rg)

Input:

Output:
Side effect:

Note:

ZENSr PX;
FILE xfile;
int base;
ZENRing Rg;

Rg.
0 if no error occurred, ZENERR otherwise.

error occurred.

the beginning of the stream

A stream file and an unallocated series PX of a finite ring

PX is allocated and filled with the series read in file if no

Maple’s format is used. The biggest monomial must be at
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Procedure 178 Printing to file.

int ZENSrPrintToFile(file, PX, base, Rg)
FILE xfile;
ZENSr PX;
int base;
ZENRing Rg;

Input: A stream file, an allocated series PX of a finite ring Rg and
a base base€ {2,...,16}.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Printing a representation of PX in base base to file.
Note: Maple’s format is used.

Procedure 179 Converting from a string yo an internal representation.

int ZENSrGetFromString(PX, s, Rg)
char *s;
ZENSr PX;
ZENRing Rg;

Input: An unallocated series PX of a finite ring Rg and a string s
representing a series to an internal representation.
Output: The number of character read in s or ZENERR if an error
occurred.
Side effect: PX is allocated and filled with s if the output is different from
ZENERR

Procedure 180 Converting to string to an internal representation.

char *ZENSrPutToString(PX, Rg)
ZENSr PX;
ZENRing Rg;

Input: An allocated series PX of a finite ring Rg.
Output: An allocated string representing PX to an internal represen-
tation or ZENNULL if an error occurred.
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Procedure 181 Getting from file to an internal representation.

int ZENSrGetFromFile(PX, file, Rg)
ZENSr PX;
FILE xfile;
ZENRing Rg;

Input: A stream file, and an unallocated series PX of a finite ring
Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: PX is filled with the series read in file

Procedure 182 Writing to file to an internal representation.

int ZENSrPutToFile(file, PX, Rg)
FILE *file;
ZENSr PX;
ZENRing Rg;

Input: A stream file, an allocated series PX of a finite ring Rg.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Printing a representation of PX to file.

4.6 Procedures to handle elliptic curves.

These routines basically implement the group law defined on an elliptic curve.
In zen, such an elliptic curve is given by its Weierstrass parametrization,

Y24+ a1 XY +asY = X%+ asX? + as X + ag.

For efficieny, ZEN procedures do not work directly with these parameters
but on an internal Weierstrass parametrization. This internal parametrization
(isomorphic to the user parametrization) depends on the “characteristic” and
on the invariant of the curve. This internal parametrization is:

Characteristic 2, invariant = 0: Y2 + a3Y = X3 4+ a4 X + as.
Characteristic 2, invariant # 0: Y2 + XY = X3 + a4 X + as.
Characteristic 3, invariant = 0: Y2 = X3 + a4 X + as.
Characteristic 3, invariant # 0: Y2 = X® + a; X2 + as.
Characteristic > 3: Y2 = X3 4+ a4 X + as.

The conversion between this internal parametrization and the user parametriza-
tion is done once at the initialization of the curve with ZENEcInitialize and each
time an I/O operation is performed, for instance ZENEcPtSetX, ZENEcPtSetXY,
ZENEcPrintToString,. . .
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4.6.1 Elliptic curve

Procedure 183 Allocation of an elliptic curve.

int ZENEcAlloc(E,Rg)
ZENEc E;
ZENRing Rg;

Input: An unallocated elliptic curve and a finite ring Rg.
Output: ZENERR if an error occured, 0 otherwise
Side effect: The elliptic curve is allocated.

Procedure 184 Initialization of an elliptic curve.

int ZENEcInitialize(E,al,a2,a3,a4,a6)
ZENEc E;
ZENE1lt al, a2, a3, a4, ab;

Input: Five parameters al,a2, a3, a4, a6 of an elliptic curve the
equation of which is Y2 + a1 XY + azY = X3 4+ ax X2 +
adx + ab.

Output: ZEN_HAS_INVERSE if the curve was succesfully initial-
ized, ZEN_NO_INVERSE if a factor of a modulo was found,
ZENERR otherwise.
Side effect: The curve E is initialized. Its internal parametrization is
computed.

Procedure 185 Disallocating an elliptic curve

void ZENEcFree(E)
ZENEc E;

Input: An elliptic curve E.
Side effect: E is freed.

Procedure 186 a;

ZENE1t ZENEcA1(E)
ZENEc E;

Input: An elliptic curve E.
Output: The coefficient al of the curve.
Note: This procedure is a macro, do not disallocate its output.
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Procedure 187 ay

ZENE1t ZENEcA2(E)
ZENEc E;

Input: An elliptic curve E.
Output: The coefficient a2 of the curve.
Note: This procedure is a macro, do not disallocate its output.
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Procedure 188 a3

ZENE1t ZENEcA3(E)
ZENEc E;

Input: An elliptic curve E.
Output: The coefficient a3 of the curve.
Note: This procedure is a macro, do not disallocate its output.

Procedure 189 a4

ZENE1t ZENEcA4(E)
ZENEc E;

Input: An elliptic curve E.
Output: The coefficient a4 of the curve.
Note: This procedure is a macro, do not disallocate its output.

Procedure 190 ag

ZENE1t ZENEcA6(E)
ZENEc E;

Input: An elliptic curve E.
Output: The coefficient ab of the curve.
Note: This procedure is a macro, do not disallocate its output.

Procedure 191 The discriminant.

ZENE1t ZENEcD(E)
ZENEc E;

Input: An elliptic curve E.
Output: The discrminant of the curve.
Note: This procedure is a macro, do not disallocate its output.
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Procedure 192 The invariant.

ZENE1t ZENEcJ(E)
ZENEc E;

Input: An elliptic curve E.
Output: The invariant of the curve.
Note: This procedure is a macro, do not disallocate its output.

4.6.2 Allocation

Procedure 193 Point allocation

int ZENEcPtAlloc(Pt,E)
ZENEcPt Pt;
ZENEc E;

Input: An unallocated ZENEcPt and an elliptic curve E.
Output: ZENERR if an error occured, 0 otherwise
Side effect: The point is allocated.

Procedure 194 Point freeing

void ZENEcPtFree(P, E)
ZENEcPt P;
ZENEc E;

Input: An allocated point P of an elliptic curve E.
Side effect: P is disallocated.

4.6.3 Assigning

Procedure 195 Setting a point to zero

void ZENEcPtSetToZero(P,E)
ZENEcPt P;
ZENEc E;

Input: An allocated point P of an elliptic curve E.
Side effect: P is set to the identity element of the curve.
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Procedure 196 Enumerating points on a curve.

Input:
Output:

Side effect:

Note:

int ZENEcPtSetNext(P, Q, E)
ZENEcPt P;
ZENEcPt Q;
ZENEc E;

Two points P and Q of a curve E.

ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse of a modulo is found , ZEN_HAS_INVERSE otherwise.
P is assigned with a point whose abcissa is obtained from the
abcissa of Q by ZENEItSetNext.

Valid only in finite fields. This procedure loops for ever if
there is mo point on the curve !

Procedure 197 Assigning a point with another point.

Input:
Side effect:

void ZENEcPtAssign(R, P, E)
ZENEcPt R;
ZENEcPt P;
ZENEc E;

Two allocated points P and Q of an elliptic curve E.
P is filled with Q.

Procedure 198

Input:

Side effect:

Getting the abcissa.

void ZENEcPtGetX(a, P, E)
ZENE1lt a;
ZENEcPt P;
ZENEc E;

An allocated point P of an elliptic curve E and an element
a.
a is filled with the abscissa of P.

Procedure 199

Input:

Side effect:

Getting the ordinate.

void ZENEcPtGetY(a, P, E)
ZENE1t a;
ZENEcPt P;
ZENEc E;

An allocated point P of an elliptic curve E and an element
a.
a is filled with the abscissa of P.
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Procedure 200 Setting the abcissa and ordinate of a point.

void ZENEcPtSetXY(P,x,y,E)
ZENEcPt P;
ZENElt x,y;
ZENEc E;

Input: An allocated point P of an elliptic curve E and two elements
X, Y.
Output: The abcissa and ordiante of P are filled respectively with x
and y.

4.6.4 Tests

Procedure 201 Is a point equal to another point ?

int ZENEcPtAreEqual(P, Q, E)
ZENEcPt P, Q;
ZENEc E;

Input: Two allocated points P and Q of an elliptic curve E.
Output: The predicate P = Q

Procedure 202 Is a point on the curve ?

int ZENEcPtIsOnEc(P, E)
ZENEcPt P;
ZENEc E;

Input: An allocated point P of an elliptic curve E.
Output: The predicate P € E

Procedure 203 Is a point equal to zero ?

int ZENEcPtIsZero(P, E)
ZENEcPt P;
ZENEc E;

Input: An allocated point P of an elliptic curve E.
Output: The predicate P =0
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4.6.5 Arithmetic

Procedure 204 Addition.

Input:

Output:

Side effect:

Note:

int ZENEcPtAdd(R, P, Q, E)
ZENEcPt R;
ZENEcPt P;
ZENEcPt Q;
ZENEc E;

Three allocated points P, Q and R of an elliptic curve E.
ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-
erwise

R = P 4+ Q i ZEN_HAS.INVERSE is returned,
ZENRingFact(Rg) is filled with a factor of a modulo if
ZEN_NO_INVERSE is returned.

We must have R # P

Procedure 205

Input:
Output:

Side effect:

Note:

Subtraction.

int ZENEcPtSubtract(R, P, Q, E)
ZENEcPt R;
ZENEcPt P;
ZENEcPt Q;
ZENEc E;

Three allocated points P, Q and R of an elliptic curve E.
ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-
erwise

R = P — Q i ZEN_HAS_LINVERSE is returned,
ZENRingFact(Rg) is filled with a factor of a modulo if
ZEN_NO_INVERSE is returned.

We must have R # P
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Procedure 206 Doubling.

Input:
Output:

Side effect:

int ZENEcPtDouble(R, P, E)
ZENEcPt R;
ZENEcPt P;
ZENEc E;

Two allocated points P and R of an elliptic curve E.
ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-
erwise

R = 2P if ZEN_HAS_INVERSE is returned, ZENRingFact(Rg)
is filled with a factor of a modulo if ZEN_NO_INVERSE is
returned.

Procedure 207

Input:
Side effect:

Opposite.

void ZENEcPtNegate(R, P, E)
ZENEcPt R;
ZENEcPt P;
ZENEc E;

Two allocated points P and R of an elliptic curve E.

R = —P if ZEN_HAS_INVERSE is returned,
ZENRingFact(Rg) is filled with a factor of a modulo if
ZEN_NO_INVERSE is returned.

Procedure 208

Input:

Output:

Side effect:

Multiplication.

int ZENEcPtMult(R, k, k1, P, E)
ZENEcPt R;
BigNum k;
BigNumLength k1;
ZENEcPt P;
ZENEc E;

Two allocated points P and R of an elliptic curve E and a
large integer k of size kl.

ZENERR if an error occurred, ZEN_NO_INVERSE if an in-
verse was impossible to compute, ZEN_HAS_INVERSE oth-
erwise

R = kP if ZEN_HAS_INVERSE is returned, ZENRingFact(Rg)
is filled with a factor of a modulo if ZEN_NO_INVERSE is
returned.
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Procedure 209 Adding several points at the same time on elliptic curves.

int ZENMEcPtAdd(pR, pP, p-Q, p-E, type, nb, Rg)
ZENEcPt *p_R, *p P, *p_Q;
ZENEc *p_E;
char *type;
int nb;
ZENRing Rg;

Input: 2 arrays of nb points to add on different curves. 3 different
additions are possible following type:
e type[i]=MEc_No: Nothing is done.
o type[i]=MEc_Add: xp_P and xp_Q are added.

o type[i]=MEc_Double: xp_P is doubled.
Output: -1 if an error occured, ZEN_NO_INVERSE if a factor is

found, ZEN_HAS_INVERSE otherwise.
Side effect: The result is put in xp_R.

Procedure 210 Multiplying several points by integers at the same time on el-
liptic curves.

int ZENMEcPtMult(pR, pk, pXkl, pP, p.E, nb, Rg)
ZENEcPt *p R, *p_P;
BigNum *p_k;
BigNumLength *p_k1;
ZENEc *p E;
int nb;
ZENRing Rg;

Input: An array of points p_P and an array of BigNum (p_k, p_kl).
Output: -1 if an error occured, ZEN_NO_INVERSE if a factor is
found, ZEN_HAS_INVERSE otherwise.
Side effect: The products of p_-P by the BigNums p_k are put in p_R.

4.6.6 Input/Output
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Procedure 211 Converting from string.

int ZENEcPtReadFromString(R, s, base, E)
ZENEcPt R;
char *s;
int base;
ZENEc E;

Input: An elliptic curve E, an allocated point R and a string s rep-
resenting a point in base base € {2,...,16}.
Output: The number of character read in s or ZENERR if an error
occurred.
Side effect: R is filled with s if the output is not ZENERR.

Procedure 212 Converting to string.

char* ZENEcPtPrintToString(R, base, E)
ZENEcPt R;
int base;
ZENEc E;

Input: An allocated point R of an elliptic curve E and o base base €
{2,...,16}.
Output: An allocated string representing R in base base or ZENNULL
if an error occurred.

Procedure 213 Reading from file.

int ZENEcPtReadFromFile(R, file, base, E)
ZENEcPt R;
FILE x*file;
int base;
ZENEc E;

Input: A stream file, an allocated point R of an elliptic curve E and
a base base € {2,...,16}.
Output: 0 if no error occurred, ZENERR otherwise.
Side effect: R is filled with the point read in file if no error occurred.
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Procedure 214 Printing to file.

int ZENEcPtPrintToFile(file, R, base, E)
FILE *file;
ZENEcPt R;
int base;
ZENEc E;

Input: A stream file, an allocated point R of an elliptic curve E and
a base base € {2,...,16}.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Printing a representation of R in base base to file.

Procedure 215 Converting from a string to an internal representation.

int ZENEcPtGetFromString(R, s, E)
ZENEcPt R;
char *s;
ZENEc E;

Input: An allocated point R of an elliptic curve E and a string s
representing a point to an internal representation.
Output: The number of character read in s or ZENERR if an error
occurred.
Side effect: R is filled with s if the output is different from ZENNULL

Procedure 216 Converting to string to an internal representation.

char* ZENEcPtPutToString(R, E)
ZENEcPt R;
ZENEc E;

Input: An allocated point R of an elliptic curve E.
Output: An allocated string representing R to an internal represen-
tation or ZENNULL if an error occurred.

Procedure 217 Getting from file to an internal representation.

int ZENEcPtGetFromFile(R, file, E)
ZENEcPt R;
FILE x*file;
ZENEc E;

Input: A stream file, and an point R of an elliptic curve E.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: R is filled with the point read in file
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Procedure 218 Writing to file to an internal representation.

int ZENEcPtPutToFile(file, R, E)
FILE xfile;
ZENEcPt R;
ZENEc E;

Input: A stream file, an allocated point R of an elliptic curve E.
Output: ZENERR if an error occurred, 0 otherwise.
Side effect: Printing a representation of R to file.

4.7 Optimizations

4.7.1 Precomputations

Precomputations needed to speed up procedures must be set in a ZENPrc struc-
ture before giving it to ZENRingAddPrc() and ZENRingRmPrc().

The available flags are:

ZENPRC_FINITE_FIELD: Use some optimizations specific to finite fields.
This flag is used only to indicate that the ring is a finite field. If set, some
of the following precomputation flags performs better optimizations.

ZENPRC_ELT_MULTIPLY: Speeds up multiplications in finite fields. In mod-
ular rings with large modulus try to use Karatsuba’s divide and conqueer algo-
rithm. In an extension, try to use Newton’s method based on the Karatsuba’s
algorithm to compute modulos.

ZENPRC_ELT_EXP: Speeds up ZENEIltExp(). Provides reduction of the ex-
ponent modulo the cardinality minus one in finite fields (ZENPRC_FINITE_FIELD
must be set).

ZENPRC_TRACE: Speeds up traces in finite fields (ZENPRC_FINITE_FIELD
must be set).

ZENPRC_POLY_ROOTS_CANONICAL: Speeds up the procedure PolyRootsCanon-
ical() in finite fields (ZENPRC_FINITE_FIELD must be set).

Procedure 219 Setting all the precomputation flags.

void ZENPrcSetAll(Prc)
ZENPrc Prc;

Input: A precomputation structure Prc.
Side effect: All the precomputation flags are set in Prc EXCEPT the
ZENPRC_FINITE_FIELD flag.
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Procedure 220 Setting no precomputation flag.

void ZENPrcSetNone(Prc)
ZENPrc Prc;

Input: A precomputation structure Prc.
Side effect: No precomputation flag is set in Prc.
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Procedure 221 Adding a precomputation flag.

void ZENPrcSet(Prc, prp)
ZENPrc Prc;
int prp;

Input: A precomputation flag prp and a structure Prc.
Side effect: The precomputation flag prp is set in Prc.

Procedure 222 Removing a precomputation flag.

void ZENPrcUnset(Prc, prp)
ZENPrc Prc;
int prp;

Input: A precomputation flag prp and a structure Prc.

Side effect: The precomputation flag prp is suppressed from Prc.

Procedure 223 Is a precomputation flag already set.

int ZENPrcIsSet(Prc, prp)
ZENPrc Prc;
int prp;

Input: A precomputation flag prp and a structure Prc.
Output: 1 if prp is in Prc, 0 otherwise.

Procedure 224 Assigning a precomputation flag in another flag.

void ZENPrcAssign(prcl, prc2)
ZENPrc prcl, prc2;

Input: Two precomputation structures prcl and prc2.
Side effect: prc2 is equal to prcl.
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Procedure 225 Intersection of 2 precomputation flags.

void ZENPrcAnd(prcl, prc2)
ZENPrc prcl, prc2;

Input: Two precomputation structures prcl, prc2.
Side effect: prc2& = prcl.

Procedure 226 Union of 2 precomputation flags.

void ZENPrcOr(prcl, prc2)
ZENPrc prcl, prc2;

Input: Two precomputation structures prcl, prc2.
Side effect: prc2| = prcl.

Procedure 227 Negation of a precomputation flag.

void ZENPrcNeg(prc)
ZENPrc prc;

Input: A precomputation structure prc.
Side effect: prc ="prc.

Procedure 228 Precomputing.

int ZENRingAddPrc(Rg, Prc)
ZENRing Rg;
ZENPrc Prc;

Input: A finite ring Rg and precomputations Prc.
Output: ZENERR if an error occured, ZEN_NO_INVERSE if a factor
of a modulo was discovered, ZEN_HAS_INVERSE otherwise.
Side effect: Precomputations asked in the flags of Prc are done in order
to speed up the corresponding procedures. ZENRingFact(Rg)
is filled with a factor of a modulo if ZEN_NO_INVERSE is
returned.
Note: Precomputations can take time. ..
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Procedure 229 Suppressing precomputations.

void ZENRingRmPrc(Rg, Prc)
ZENRing Rg;
ZENPrc Prc;

Input: A finite ring Rg and precomputations Prc.
Side effect: Structures already allocated by ZENRingAddPrc() are disal-
located.

Procedure 230 The precomputations of Rg.

ZENPrc ZENRingPrcp(Rg)
ZENRing Rg;

Input: A finite ring Rg.
Output: The precomputations already done in Rg.
Note: This procedure is a macro which returns one field of Rg.

4.7.2 Clones

Type of clones must be set in a ZENCln structure before giving it to ZENRingClone().
The available flags are:
ZENCLN_LOG: Use a generator to store results of operations in tables. This
is possible when the number of elements in the finite field is smaller than 2'6.
This overrides ZENCLN_TABULATE and ZENCLN_MONTGOMERY when sev-
eral flags are set.
ZENCLN_TABULATE: Store results of operations in tables whenever it’s
possible, mainly when the number of elements in the ring is smaller than 28.
ZENCLN_MONTGOMERY: In modular rings, use Montgomery’s reduction.

Procedure 231 Setting all the clone flags.

void ZENC1nSetAl11l(Cln)
ZENC1ln Cln;

Input: A clone structure Cln.
Side effect: All the clone flags are set in Cln.

Procedure 232 Setting no clone flag.

void ZENC1lnSetNone(Cln)
ZENC1ln Cln;

Input: A clone structure Cln.
Side effect: No clone flag is set in Cln.




94 CHAPTER 4. ENUMERATING THE FUNCTIONS OF ZEN

Procedure 233 Adding a clone flag.

void ZENClnSet(Cln, prp)
ZENC1ln Cln;
int prp;

Input: A clone flag prp and a structure Cln.
Side effect: The clone flag prp is set in Cln.

Procedure 234 Removing a clone flag.

void ZENClnUnset(Cln, prp)
ZENC1ln Cln;
int prp;

Input: A clone flag prp and a structure Cln.
Side effect: The clone flag prp is suppressed from Cln.

Procedure 235 Is a clone flag already set.

int ZENClnIsSet(Cln, prp)
ZENC1n Cln;
int prp;

Input: A clone flag prp and a structure Cln.
Output: 1 if prp is in Cln, 0 otherwise.

Procedure 236 Removing a clone flag.

void ZENClnUnset(Cln, prp)
ZENC1ln Cln;
int prp;

Input: A clone flag prp and a structure Cln.
Side effect: The clone flag prp is suppressed from Cln.

Procedure 237 Assigning a clone flag in another flag.

void ZENClnAssign(clnl, cln2)
ZENC1n clnl, cln2;

Input: Two clone structures cInl and cIn2.
Side effect: cIn2 is equal to cInl.
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Procedure 238 Intersection of 2 clone flags.

void ZENClnAnd(clnl, cln2)
ZENC1n clnl, cln2;

Input: Two clone structures clnl, cIn2.
Side effect: cIn2& = cinl.

Procedure 239 Union of 2 clone flags.

void ZENC1nOr(clnl, cln2)
ZENC1n clnl, cln2;

Input: Two clone structures clnl, cIn2.
Side effect: cIn2| = cInl.

Procedure 240 Negation of a clone flag.

void ZENClnNeg(cln)
ZENCln cln;

Input: A clone structure cln.
Side effect: cln =%In.

Procedure 241 Clone of a ring.

ZENRing ZENRingClone(Rg, cln)
ZENRing Rg;
ZENC1n cln;

Input: A ZENRing Rg and the type of the clone cln.
Output: A ring R if everything was succesfully initialized, ZENNULL
otherwise.
Note: Cloning can teake time. If no flag is set in cln, a call to
ZENRingCopy() is performed. If several flags are set, this
procedure can try to make “good choices”.

In fact, two rings are allocated, the returned one and its ZENRingOrigin().
For instance, if PR[0] is Z/37, and PR[1] is Z/ 57, then ZENRingChinese(R,2,PR)
will affect to R Z/37 x Z/ 57, while ZENRingOrigin(R) will be set to Z/{57,- A
subsequent call to ZENRingFree will also free this ring, but R1=ZENRingCopy(R)
can be helpful to keep this original ring.
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Procedure 242 Chinese ring.

int ZENRingChinese(R, N, PR)
int N;
ZENRing R, *PR;

Input: An wunallocated ZENRing, and an array of ZENRings PR of
size N.
Output: 0 if the ring R is succesfully initialized, ZENNULL otherwise.
Note: The obtained ring is the product of the N inputs. These
rings must be of the same type: either N modular rings, or
N polynomial extensions over a same ring. Nevertheless,
some or all of these ring can be clones.

Procedure 243 Testing whether two rings are equal.

int ZENRingAreEqual(R1,R2)
ZENRing R1,R2;

Input: Two ZENRings.
Output: ZENERR if an error occured, 1 if the two ZENRings are the
same, 0 otherwise.
Note: A clone is equal to its original ring.

4.8 Big integers layer of ZEN

The ZEN library was primarily built upon the BigNum library [2] (version 1.0-b).
Then, we have extended ZEN so that it can use GMP (from version 2.0),
the Gnu Multiprecision Package [3]. In order to achieve this final goal, all the
big integers functions were called in ZEN through a reformatted version of both
BigNum and GMP’ functions. These macros were prefixed by ZBN.
Since only few functions from BigNum or GMP are needed, we finally decided
to design a specific big integers layer for ZEN, the ZBN layer (from version 3.0).

4.8.1 Caracteristics of the ZBN layer

Most of ZBN procedures are working on arrays of digits. The digits are of type
BigNumDigit. An array of digits is of type BigNum. And the size of these arrays
is of type BigNumlLength. The sizes of these types depends on the computer
you are using (generally, 32 or 64 bits). BigNumDigit must be an unsigned type.
BigNumLength must be a signed.



4.8. BIG INTEGERS LAYER OF ZEN 97

4.8.1.1 Assembler directives

Unlike the library BigNum or the library GMP, one important principle fol-
lowed while designing ZBN is to minimize as much as possible code written in
assembler. There are two important benefits for such an approach:

e It is no more a problem to port the library to a new architecture. In
particular, to optimize it since we only have to write only few assembler
sentences.

e Compilers are becoming more and more powerfull. They are able to opti-
mize codes much more efficiently than us (unrolling loops, managing cache
misses, ...).

That’s why, we limited our assembler directives to the few arithmetic assembler
instructions which are not easily accessed in C. The coresponding macros are
described below.

Procedure 244 Adding two digits

void zbnadd(cl, c0, al, a0, bl, b0)
BigNumDigit c1, cO;
BigNumDigit al, a0;
BigNumDigit bl, bO;

Input: Four digits a0 and b0, al and bl to add.

Side effect: c0 = a0 + b0 mod 9SIZEBLOC 7 ¢1 = a1 + bl + ((a0 +
b0) + QSIZE_BLOC) mod 2S1ZE.BLOC

Note: This macro is sometimes an assembler directive.

Procedure 245 Subtracting two digits

void zbnsub(cl, c0, al, a0, bl, b0)
BigNumDigit c1, cO;
BigNumDigit al, a0;
BigNumDigit b1, bO;

Input: Four digits a0 and b0, al and bl to subtract.

Side effect: c0 = a0 — b0 mod 2SIZE—BLOC and cl = al — bl — ((ao N
b0 mod 251ZE BLOC+1) . 5SIZE BLOC) 14 2SIZE.BLOC

Note: This macro is sometimes an assembler directive.
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Procedure 246 Multiplying digits

void zbnmul(cl, cO, a, b)
BigNumDigit c1, cO;
BigNumDigit a;
BigNumDigit b;

Input: Two digits a and b.

Side effect: c0 = a0 x b0 mod 2512E-BLOC ;n3 1 = a1 x b1 + ((a0 x
b0) = 2SIZE-BLOC) 114 9SIZE-BLOC.

Note: This macro is sometimes an assembler directive.

Procedure 247 Dividing 2 digits

void zbndiv(q, r, nl, n0, d)
BigNumDigit q;
BigNumDigit r;
BigNumDigit nl1, nO;
BigNumDigit d;
Input: Two digits n1 and n0 to be divided by d. One must have
d= 25|ZE_BLOC—1 =1

Side effect: q = (nlx 2S|ZE-BLOC+n0)+d andr = (nl x 991ZE_BLOC
n0) mod d.
Note: This macro is sometimes an assembler directive.

Procedure 248 Hamming weight of one digit

void zbnwght(w, d)
BigNumLength w;
BigNumDigit d;

Input: A digit d.
Side effect: The Hamming weight of d is stored in w.
Note: This is a macro which is sometimes an assembler directive.

When none assembler directive is available, the algorithm
used depends on the flag LOW_MEMORY.

4.8.1.2 Memory limitation

Some of the functionalities of the ZBN layer, need a lot of memory at compilation
time. You may decrease the amount of memory needed by using the following
compilation flag which is set in zbn.h.

# define LOW_MEMORY O
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4.8.1.3 Karatsuba’s multiplication on integers

The Karatsuba’s multiplication on big integers is used by default in ZEN. This
can be disabled using the KARA parameter.

# define KARA 1

4.8.2 Constants

Three constants are used in ZEN:

SIZE BLOC depends on the arithmetic of computers. It is the size in bits of a
BigNumDigit (usually 32 or 64 bits).

SIZE_CHAR is the size in bits of a char (usually 8 bits).
SIZE_SHORT is the size in bits of a short (usually 16 bits).

4.8.3 BigNum allocation

Procedure 249 Allocation of a BigNum

BigNum ZBNC(nl)
BigNumLength nl;

Input: A length nl.
Output: An allocated BigNum of size nl or NULL if an error occured.

Procedure 250 Freeing a BigNum
void ZBNF(n)

BigNum n;

Input: An allocated BigNum.
Side effect: n is freed.

4.8.4 Basic functions on BigNumDigits

We defined the following macros to help manipulating a BigNum.

Procedure 251 Reduction modulo a bloc

BigNumLength modSizeBloc(x)
BigNumLength x;

Input: An integer x.
Output: The remainder of x/SIZE_.BLOC, that is to say x mod
SIZE_BLOC
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Procedure 252 Number of blocs

BigNumLength divSizeBloc(x)
BigNumLength x;

Input: An integer x.
Output: The quotient x/SIZE_.BLOC

The two following functions have an equivalent meaning, once replaced
SIZE_BLOC by SIZE_CHAR.

BigNumLength modSizeChar (x)

BigNumLength divSizeChar (x)

Procedure 253 Shifting 1

BigNumDigit BlocExp2(x)
unsigned int x;

Input: An integer x.
Output: The BigNumDigit representing 2% if x < SIZE_BLOC, 0 oth-
erwise.

Procedure 254 Getting least significant digit of a BigNum

BigNumDigit ZBNGetDigit(n)
BigNum n;

Input: An allocated BigNum.
Output: The least significant digit of n.

Procedure 255 Assigning least significant digit of a BigNum

void ZBNSetDigit(n,d)
BigNum n;
BigNumDigit d;

Input: An allocated BigNum and o BigNumDigit.
Side effect: The least significant digit of n is set to d.
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Procedure 256 Getting it" digit of a BigNum

BigNumDigit ZBNDigit(n,i)
BigNum n;
int i;

Input: An integer and an allocated BigNum.
Output: The ith digit of n.
Note: The 0th digit is the least significant one. If n is of size nl,
the (nl-1)th is the most significant one. This is a macro that
can be a lvalue in an assignment.

Procedure 257 Number of unsignificant bits in a digit

BigNumLength ZBNNumLeadingZeroBitsInDigit(d)
BigNumDigit d;

Input: A digit d.
Output: The number k of most significant bits set to zero in d.
Note: Ifd is zero, k = SIZE_.BLOC.

Procedure 258 Number of significative bits

unsigned int ZBNNumBitsInDigit(d)
BigNumDigit d;

Input: A digit d.
Output: The number k of significative bits in d.
Note: Ifd is zero, k = 0.

Procedure 259 Significant length of a BigNum

BigNumLength ZBNNumDigits(n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum and its length.
Output:  The number of significant digits of (n,nl).
Note: If (n,nl) is zero, returns 1.
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4.8.5 Assigning

Procedure 260 Set a BigNum to zero

void ZBNSetToZero (n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum and its length.
Side effect: The BigNum is filled with zeros.

Procedure 261 Set a BigNum to one

void ZBNSetToOne (n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum and its length.
Side effect: The BigNum is filled with zeros execept the first digit which

is set to one.

Procedure 262 Assigning BigNums

void ZBNAssign(m, n, nl)
BigNum m;
BigNum n;
BigNumLength nl;

Input: Two allocated BigNums and o length.

Side effect: The BigNum m is filled with (n,nl).
Note: All kinds of overlapping are possible. No side effect if nl is

ZEero.

4.8.6 Random assignment
In the same spirit as for allocation functions, we allow customized random func-

tions.
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Procedure 263 Pseudo-Random Generator (PRG) initialization with a BigNumDigit

void zbnsrandom(seed)
BigNumDigit seed;

Input: A BigNumDigit which serves as seed for the internal PRG.

Note: The PRG behavior is determined by this seed. The programs
included in ZEN use this function to initialize the PRG. By
default, this function calls the native ZENNativeSrand func-
tion. This can be overwritten by ZENSetRandomFunctions.
This function is provided for compatibility purposes with
older version of ZEN (c¢f. ZENNativeSRand).

Procedure 264 Pseudo-Random Generation of a BigNumDigit
BigNumDigit zbnrandom()

Output: A pseudo-random BigNumDigit.

Note: This function is used all over the ZEN and ZENFACT [-
braries when random generation is needed. By default, this
function calls the native ZENNativeRand function. This can
be overwritten by ZENSetRandomFunctions.

Procedure 265 Set a BigNum randomly
void ZBNSetRandom(n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum and its length.
Side effect: The BigNum is filled randomly.

4.8.7 Comparisons

Procedure 266 Test if a big integer value is equal to zero

int ZBNIsZero (n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum and its length.
Output: The predicate (n,nl) == 0
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Procedure 267 Test if a big integer value is equal to one

int ZBNIsOne (n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum and its length.
Output: The predicate (n,nl) ==1

Procedure 268 Comparison of bignums

int ZBNCompare(m, ml, n, nl)
BigNum m;
BigNumLength ml;
BigNum n;
BigNumLength nl;

Input: Two allocated BigNums and their lengths
Output:

e 1ifm>n;
e zero if m =n;

e —1ifm<n.

Procedure 269 Test if two bignums are equal

int ZBNAreEqual(m, ml, n, nl)
BigNum n, m;
BigNumLength nl, ml;

Input: Two allocated BigNums and their lengths
Output: The predicate (n,nl) == (m,ml)
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Procedure 270

Input:
Output:

Note:

Comparison of significant bignums

int ZBNCompareLazy(m, ml, n, nl)
BigNum m, n;
BigNumLength ml, nl;

Two bignums

e 1lifm>n;
® zero if m =n;

o —1lifm<n.

One must have m[ml-1] # 0 and n[nl-1] # 0.

4.8.8 Binary operations

Procedure 271 And

Input:
Side effect:
Note:

void ZBNAnd(m, n, nl)
BigNum m, n;
BigNumLength nl;

Two allocated BigNums and a length.

(m,nl) = (m,nl) and (n,nl).

One must have the allocated size of m which must be greater
(or equal) than nl.

Procedure 272

Input:
Side effect:
Note:

Or

void ZBNOr(m, n, nl)
BigNum m, n;
BigNumLength nl;

Two allocated BigNums and a length.

(m,nl) = (m,nl) or (n,nl).

One must have the allocated size of m which must be greater
than nl.
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Procedure 273 Xor

void ZBNXor(m, n, nl)
BigNum m, n;
BigNumLength nl;

Input: Two allocated BigNums and o length.
Side effect: (m,nl) = (m,nl) zor (n,nl).
Note: One must have the allocated size of m which must be greater
than nl.

4.8.9 Addition

Procedure 274 Incrementation

BigNumDigit ZBNAddCarry(m, ml, carry)
BigNum m;
BigNumLength ml;
BigNumDigit carry;

Input: An allocated BigNum and its length, and a carry in that must
be 0 or 1.
Output: The carry out.
Side effect: (m,ml)+ = carry
Note: If ml is zero, nothing is done and the returned value is carry.

Procedure 275 Addition

BigNumDigit ZBNAdd (m, ml, n, nl, carry)
BigNum m;
BigNumLength ml;
BigNum n;
BigNumLength nl;
BigNumDigit carry;

Input: Two allocated BigNums, their lengths and a carry in that
must be be 0 or 1.
Output: The carry out
Side effect: (m,ml)+ = (n,nl) + carry.
Note: One must have nl < ml. If nl =0, then ZBNAdd(m,ml,n,0,c)
behaves like ZBNAddCarry(m,ml,c).
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4.8.9.1 Subtraction

Procedure 276 Additive inverse
void ZBNComplement(n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum

Side effect: (n,nl) « 251ZE-BLOCxnl _ 1 _ (n y))
Note: If nl equals zero, does nothing.

Procedure 277 Decrementation

BigNumDigit ZBNSubtractBorrow(m, ml, carry)
BigNum m;
BigNumLength ml;
BigNumDigit carry;

Input: An allocated BigNum, its length and a borrow in that must
be 0 or 1.
Output: The borrow out.
Side effect: (m,ml)— = (1 — carry)
Note: If ml is zero, nothing is done and the return value is carry.

Procedure 278 Subtraction

BigNumDigit ZBNSubtract(m, ml, n, nl, carry)
BigNum m;
BigNumLength ml;
BigNum n;
BigNumLength nl;
BigNumDigit carry;

Input: Two allocated BigNums, their length and a borrow in that
must be be 0 or 1.
Output: The borrow out.
Side effect: (m,ml)— = (n,nl) + (1 — carry)
Note: One must have nl < ml. If nl = 0,
then ZBNSubtract(m,ml,n,0,b) behaves like
ZBNSubtractBorrow(m,ml,b).
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4.8.9.2 Shifting
4.8.9.3 Shifting a BigNum

Procedure 279 Shifting left of a small amount

BigNumDigit ZBNShiftLeft(n, nl, 1)
BigNum n;
BigNumLength nl;
BigNumLength 1;

Input: An allocated BigNum, its length and a positive integer 0 <
| < SIZE_BLOC.
Output: The digit shifted out
Side effect: (n,nl) <<=1
Note: If| equals zero, nothing is done and the returned value is 0.

Procedure 280 Shifting right of a small amount

BigNumDigit ZBNShiftRight(n, nl, 1)
BigNum n;
BigNumLength nl;
BigNumLength 1;

Input: An allocated BigNum, its length and a positive integer 0 <
| < SIZE_BLOC.
Output: The digit shifted out
Side effect: (n,nl) >>=1
Note: If| equals zero, nothing is done and the returned value is 0.

Procedure 281 Shifting left

void ZBNAnyShiftLeft(r, p_rl, n, nl, nnn)
BigNum r,n;
BigNumLength *p_rl,nl;
unsigned int nnn;

Input: Two allocated BigNums, a pointer on a length, and an inte-

ger nnn.
Side effect: r=n << nnn

Note: The size of r must be at least nl+ divSizeBloc(nnn), and such
that the result of shift can be stored. Hence, an allocated size
of nl+divSizeBloc(nnn) +1 is always sufficient. The BigNum
n can be part of r. The length of r is stored in xp_rl. The
pointer p_rl can be the address of the external value of nl.
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Procedure 282 Shifting right.

Input:

Side effect:
Note:

void ZBNAnyShiftRight(n,nl,nnn)

BigNum n;
BigNumLength nl;
unsigned int nnn;

An allocated BigNum n of nl BigNumDigits and an integer
nnn.

n >>=nnn

Low degree bits are lost

4.8.10 Multiplication

Procedure 283 Multiplication by a digit

BigNumDigit ZBNMultiplyDigit(m, ml, n, nl, d)
BigNum m; BigNumLength ml;
BigNum n; BigNumLength nl;
BigNumDigit d;

Input:
Output:
Side effect:
Note:

Two allocated BigNums and o digit.

A carry out.

(n,nh)+ = (m,ml) x d.

One must have nl > ml + 1. If ml equals zero, the return is
0 and nothing is done.

Procedure 284 Multiplication and Add

BigNumDigit ZBNMultiply(p, pl, m, ml, n, nl)
BigNum p, m, n;
BigNumLength pl, ml, nl;

Input:
Output:
Side effect:
Note:

Three allocated BigNums and their lengths

A carry out.

(p.ph)+ = (m,ml) x (n,nl).

One must have pl > ml + nl. If nl equals zero, there is no
side effect and the carry out is 0.
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Procedure 285 Multiplication
void ZBNMult(n, a, al, b, bl)
BigNum n, a, b;
BigNumLength al, bl;

Input: Three BigNums and their lengths
Side effect: (n,nl) « (a,al) x (b,bl).
Note: One must have nl > al + bl, al and bl non zeros.

Procedure 286 Squaring and Add

BigNumDigit ZBNSquare(n, nl, a, al)
BigNum n, a;
BigNumLength nl,al;

Input: Two allocated BigNums and their lengths
Output: A carry out.
Side effect: (n,nl)+ = (a,al)’.
Note: One must have nl > 2al. If al equals zero, there is no side
effect and the carry out is 0.

Procedure 287 Squaring
void ZBNSqu(n, a, al)
BigNum n, a;
BigNumLength al;

Input: Two BigNums and a length
Side effect: (n,nl) « (a,al)’.
Note: One must have n distinct from a, nl > 2al, and al > 0.

Procedure 288 Karatsuba’s multiplication of two BigNums.

BigNumDigit ZBNMultiplyKaratsuba(x,x1l,a,al,b,bl,1lim)
BigNum x,a,b;
BigNumLength x1,al,bl,lim;

Input: Three allocated BigNums with xI > al + bl and the limit of
size under which ZBNMultiplyPlain must be used.
Output: The possible carry out, or ZENERR if an error occured.
Side effect: x +=axb
Note: A buffer is allocated and freed.
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Procedure 289 Karatsuba’s multiplication

void ZBNMultiplyKaratsubaBuffer(x,a,al,b,bl,buf,lim)
BigNum x,a,b,buf;
BigNumLength al,bl,lim;

Input: Four BigNums: x = 0 of size greater or equal than al + bl,
a buffer of size at least ZBNSizeBufKaraM(bl), and the limit
of size under which ZBNMultiply must be used.
Side effect: x=axb

Procedure 290 Size of buffer needed for Karatsuba’s multiplication

BigNumLength ZBNSizeBufKaraM(1)
BigNumLength 1;

Input: The length of smallest operand.
Output: The length of the buffer needed in Karatsuba’s routines

Procedure 291 Karatsuba’s squaring of two BigNums.

BigNumDigit ZBNSquareKaratsuba(x,x1,a,al,lim)
BigNum x,a;
BigNumLength x1,al,lim;

Input: Two allocated BigNums with xI > 2al and the limit of size
under which ZBNSquare must be used.
Output: The possible carry out, or ZENERR if an error occured.
Side effect: x+=axa
Note: A buffer is allocated and freed.

Procedure 292 Karatsuba’s squaring

void ZBNSquareKaratsubaBuffer(x,a,al,buf,lim)
BigNum x,a,buf;
BigNumLength al,lim;

Input: Three BigNums: x = 0 of size greater or equal than 2 x al,
a buffer of size at least ZBNSizeBufKaraM(bl), and the limit
of size under which ZBNMultiply must be used.
Side effect: x = a2
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Procedure 293 Size of buffer needed for Karatsuba’s squaring

Input:

Output:

BigNumLength ZBNSizeBufKaraS(1)
BigNumLength 1;

The length of smallest operand and the limit under which
standard multiplication is performed.
The length of the buffer needed in Karatsuba’s routines

Procedure 294 Setting of Karatsuba’s cutoff

BigNumLength ZBNKaratsubaMultiplyCutoff (size)

Input:
Output:

Note:

BigNumLength size;

The size (> 2) in BigNumDigits of the numbers to multiply
ZENERR if an error occured, 0 if Karatsuba’s operations are
slower, the cutoff to use otherwise.

For all possible values of cutoff, a number of randomized
multiplications are performed. The fastest parameter is re-
turned. Karatsuba’s operations are only chosen if a speed
increase of at least 10% is observed. This is made because
optimizers can often include simple operations but not com-
plex ones. If difference is tiny between Karatsuba’s and stan-
dard algorithm, standard algorithm often leads to final best
results.

Procedure 295 Setting of Karatsuba’s cutoff

BigNumLength ZBNKaratsubaSquareCutoff (size)

Input:
Output:

Note:

BigNumLength size;

The size in BigNumDigits of the numbers to square
ZENERR if an error occured, 0 if Karatsuba’s operations are
slower than ZBNSquarePlain, the cutoff to use otherwise.
For all possible values of cutoff, a number of randomized
squares are performed. The fastest parameter is returned.
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4.8.11 Division

Procedure 296 Division by a digit

BigNumDigit ZBNDivideDigit(q, n, nl, d4)
BigNum q, n;
BigNumLength nl;
BigNumDigit d;

Input: Two allocated BigNums, a BigNumlLength and a
BigNumDigit.
Output: The remainder of the division n/d.
Side effect: The BigNum (q,nl-1) is filled with the quotient g
Note: The value d must be greater than ZBNDigit(n,nl-1).

Procedure 297 Division

void ZBNDivide(n, nl, d, d1)
BigNum n, d;
BigNumLength nl, dl;

Input: Two allocated BigNums and their lengths.

Side effect: The quotient and the remainder of (n,nl)/(d.dl) are stored
in n. The dl least significant digits contains the remainder,
whereas the nl — dl most significant digits contains the quo-
tient.

Note: The value ZBNDigit(d,dl-1) must be strictly greater than
ZBNDigit(n,nl-1).

4.8.12 Logarithms

Procedure 298 Logarithm in base e of a BigNum

double ZBNLog(n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum n of length nl.
Output:  The logarithm in base e of (n, nl)
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4.8.13 Square root

Procedure 299 Square root of a BigNum

BigNumLength ZBNSqrt(r, a, al)
BigNum r, a;
BigNumLength al;

Input: An allocated BigNum a of length al and another BigNum r.
Output: 0 if an error occured, the size of the square oot otherwise
Side effect: r is filled with floor(sqrt(a, al)).

Conversions between the internal representation and the ASCII represen-
tation of a BigNum are done by ZBNPrintToString and ZBNReadFromString.
ZBNPrintToFile and ZBNReadFromFile allows to write/read a BigNum in a file
using these functions.

One can moreover write to and then read from a file a BigNum in an internal
format with ZBNPutToFile and ZBNGetFromFile.

The Lazy forms of these functions assume that the BigNum is of known size
and perform no allocation.

The new version of BigNum has similar functionalities with BnFromString,
BnToString, BnFillString, BnPrintToFile and BnReadFromFile. Of course GMP
has also such features with the mpz_[inp\vertout]_[str\vertraw] functions. We
however keep the following functions that were present in the first version of
ZEN. This should ensure compatibility for reading data files written with pro-
grams that were using first version of ZEN.

Note 4 These functions cannot manage correctly BigNums of length larger than
232,

Procedure 300 Converting to string

char *ZBNPrintToString(n,nl,base)
BigNumLength nl;
int base;
BigNum n;

Input: An allocated BigNum n of length nl and o base base€
{2,...,16}.
Output:  An allocated string representing n in base base, or ZENNULL
if an error occured.
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Procedure 301

Converting from string

int ZBNReadFromStringLazy(m, ml, s, base)

Input:
Output:

Side effect:

BigNum m;
BigNumLength ml;
char *s;

int base;

An allocated BigNum and its length nl and a string s repre-
senting o BigNum in base base€ {2,...,16}.

The number of character read if no error occured, ZENERR
otherwise

n is filled with s

Procedure 302 Converting from string

int ZBNReadFromString(pn, pnl, s, base)

Input:

Output:

Side effect:

BigNum *p_n;
BigNumLength *p_nl;
char *s;

int base;

A pointer p_n on a non allocated BigNum, a pointer p_nl to
a BigNumlLength and a string s representing a BigNum in
base base€ {2,...,16}.

The number of character read if no error occured, ZENERR
otherwise

p-n is allocated and is filled with s

Procedure 303 Converting to string in an internal representation

char *ZBNPutToStringLazy(n,nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum n of length nl.
Output: An allocated string representing n in base base if no error
occured, ZENNULL otherwise.
Note: The size nl is not saved in the string.
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Procedure 304 Converting to string in an internal representation

char *ZBNPutToString(n,nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum n of length nl.
Output: An allocated string representing n in base base if no error
occured, ZENNULL otherwise.
Note: The size of the BigNum is saved in the string.

Procedure 305 Converting from string in an internal representation

int ZBNGetFromStringlLazy(n, nl, s)
BigNum n;
BigNumLength nl;
char *s;

Input: An allocated BigNum and its length nl and o string s repre-
senting a BigNum in an internal representation.
Output: The number of character read if no error occured, ZENERR
otherwise
Side effect: n is filled with s

Procedure 306 Converting from string in an internal representation

int ZBNGetFromString(pn, p.nl, s)
BigNum *p.n;
BigNumLength *p nl;
char *s;

Input: A pointer p_.n on a non allocated BigNum, o pointer p_nl
to an integer and o string s representing a BigNum in an
internal representation.

Output: The number of character read if no error occured, ZENERR
otherwise
Side effect: p_n is allocated and is filled with s

The syntax of file functions is the same, using a FILE «file instead of a string.

int ZBNPrintToFile(file,n,nl,base)

int ZBNReadFromFileLazy(n, nl, file, base)
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int ZBNReadFromFile(pmn, pmnl, file, base)

int ZBNPutToFilelLazy(file,n,nl)

int ZBNPutToFile(file,n,nl)

int ZBNGetFromFileLazy(n, nl, file)

int ZBNGetFromFile(pmn, p-nl, file)

4.8.14 Greatest Common Divisor

Two families of procedures are provided. The goal of the first family is the
computation of greatest common divisor of integers and the goal of the second
is the computation of extended ged.

Procedure 307 Integer gcd of two BigNumDigits

BigNumDigit ZBNDigitGCD(a_in, b_in)
BigNumDigit a_in, b_in;

Input: Two BigNumDigits a_in and b_in.
Output: The ged of a-in and b_in.
Note: A binary algorithm is used.

Procedure 308 Gecd of two BigNums

int ZBNGcd(g, p-gl, n, nl, m, ml)
BigNum g, n, m;
BigNumLength *p_gl, nl, ml;

Input: Two allocated BigNums n and m of size nl and ml, a BigNum
g of allocated size greater than nl and ml.
Output: The real size of the ged or ZENERR if an allocation error
occured.
Side effect: g receives the gcd of n and m.
Note: One can have g=n=m.
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Procedure 309 Extended ged of two BigNums

int ZBNEea(g, p-gl, a, p-al, n, nl, m, ml)
BigNum g, a, n, m;
BigNumLength *p_gl, *p_al, nl, ml;

Input: Two allocated BigNums (n, nl) and (m, ml) with n>m and
nl>ml, two BigNums a and g of allocated size > nl.
Output: If the ged is equal to 1, ZBN_HAS_INVERSE is returned and
a is equal to 1/m mod n, if the gcd is greater than one,
ZBN_NO_INVERSE is returned and g is the ged. When an
allocation error occured, ZENERR is returned.
Note: This porcedure is a front head for ZBNEealehmer if
LEHMER 1is set at the compilation or ZBNEeaPlain other-

wise.

4.8.15 Modular operations

Procedure 310 Reduction of a BigNum modulo another

BigNumLength ZBNModulo(pm,n,nl,m,ml)
BigNum *p_m,n,m;
BigNumLength nl,ml;

Input: Two allocated BigNums and their lengths, and a pointer on
a non allocated BigNum.
Output: ZENERR if an error occured, the length of the result other-

wise.
Side effect: xp_m is allocated and set to n mod m.

Procedure 311 Reduction of a BigNum modulo another

BigNumLength ZBNModuloLazy(pm,n,nl,m,ml)
BigNum *p._m,n,m;
BigNumLength nl,ml;

Input: Two allocated BigNums and their lengths, and a pointer on
a non allocated BigNum.
Output: 0 if an error occured, the length of the result otherwise.
Side effect: xp_m is allocated and set to n mod m.
Note: One must have ZBNDigit(n,nl-1) # 0 and
ZBNDigit(m,ml-1) # 0.
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Procedure 312 Modular addition

void ZBNModAdd(a,al,b,bl,m,ml)
BigNum a,b,m;
BigNumLength al,bl,ml;

Input: Three allocated BigNums.
Side effect: a=a+bmodm
Note: One must have ml = al, a < m, b < m and
ZBNDigit(m,ml-1) # 0. One can have a = b.

Procedure 313 Modular negation

void ZBNModNegate(a,al,b,bl,m,ml)
BigNum a,b,m;
BigNumLength al,bl,ml;

Input: Three distinct allocated BigNums.
Side effect: a= —bmod (m+1)
Note: One must have al > ml, b < m and *(m+ml) # 0.

Procedure 314 Modular subtraction

void ZBNModSubtract(a,al,b,bl,m,ml)
BigNum a,b,m;
BigNumLength al,bl,ml;

Input: Three distincts allocated BigNums.
Side effect: a=a—bmod (m+1)
Note: One must have ml > al > sizeof(m —1),a<m and b < m.

Procedure 315 Modular multiplication

void ZBNModMultiply(x,x1l,a,al,b,bl,m,ml)
BigNum x,a,b,m;
BigNumLength x1,al,bl,ml;

Input: Four allocated BigNums.
Side effect: x = a.bmod m
Note: One must have xI > al + bl + 1, %(a+al-1) # 0 and
*(b+bl-1) # 0. One can have a = b.
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Procedure 316 Modular squaring

void ZBNModSquare(x,x1l,a,al,m,ml)
BigNum x,a,m;
BigNumLength x1,al,ml;

Input: Three allocated BigNums.
Side effect: x =a%mod m
Note: One must have xl > 2xal+1, x(a+al-1) # 0 and x(b+bl-1) #
0.

4.8.16 Hamming weight of a BigNum

Procedure 317 Number of bits of a digit

BigNumLength ZBNWeightDigitFast(d)
BigNumDigit d;

Input: A BigNumDigit
Output: The number of non zero bits in d
Note: This function is only provided for compatibility. Using di-
rectly the macro zbnwght is probably slightly faster.

Procedure 318 Weight of a BigNum

BigNumLength ZBNWeight(n, nl)
BigNum n;
BigNumLength nl;

Input: An allocated BigNum n of size nl.
Output: The number of 1 in the binary representation of n.




Chapter 5

Implementation principles
of ZEN.

5.1 How to write a new arithmetic

This section is subtitled “How to write a new arithmetic” as this is certainly
the best way to understand the principles of ZEN.

An arithmetic can be mathematically defined by a set of elements that con-
tains at least two elements 0 and 1, and two operations + and x verifying the
classical properties.

Writing a new arithmetic will therefore consist in implementing these oper-
ations. Of course, technical reasons impose a much larger set of operations. In
fact, the basic point is the initialization routine that will produce a ZENRing
with all of the function pointers set to appropriate values.

Basically, all the Elt functions have to be specifically written for every new
arithmetic. For the remaining functions, one can first try the general functions
of the zed/ and zeg/ directories that will provide operations on polynomials,
matrices, series and elliptic curves, and therefore, allow extensions based on the
new arithmetic.

A modification of the _ZENBaseRingCreate function is also needed to take in
account the modification. Writing a new extension arithmetic is also possible
— for instance if you need very efficient operations on F333 and you know how
to improve existing operations in this case — but the above modification will
of course take place in the _ZENExtRingCreate function

Eventually, other specific functions can be written to replace the _ZEN or
Zed functions.

5.2 Sub-directories of ZEN

The sub-directories of ZEN can be ordered in three different sets:

e The system ones content some definitions and/or procedures useful for the
whole library.

e The motor ones constitute the heart of the library.
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e The modules were added one by one to improve the performances of some
functions.

5.2.1 System sub-directories

sub-directories — contents

sys/ — system features like error handling, runtime procedure and
documentation extraction.
zbn/ — big integers procedures.
prgm/ — test and bench programs for the library.

5.2.2 The general functions

sub-directories — contents

zed/ — default functions to manipulate the types of ZEN.

zeg/ — general functions for any arithmetic. These functions are
able to replace any specific function written in the directo-
ries of 5.2.3. These functions only use functions of zed.

zext/ — the recursive functions for any extension over a ring.

zer/ — the ZENRing definition functions.

5.2.3 Arithmetics

These are the specific arithmetics already implemented in ZEN. For each of these
arithmetic, all the functions Elt are implemented, but only some of the other
functions are. See the corresponding chapters of the “advanced user manual”
for the specific functions implemented.

sub-directories — contents

ze2/ — The arithmetic of the Galois field with two elements Fo. See
the “advanced user manual”
zep/ — The arithmetic of the modular ring Z/pZ. See the “ad-
vanced user manual”.
zef/ — The arithmetic of the ring Q. See the “advanced user man-
ual”.
zeps/ — The arithmetic of the modular ring Z/pZ with 2 < p <
9SIZE BLOC gee the “advanced user manual”.
zetab/ — The arithmetic of tabulated clones. Every extension with
p™ elements such that 3 < p™ < 9S1ZE CHAR (.11 be tabu-
lated.
zec/ — The arithmetic of clones using Chinese remainder theorems.
zem/ — The arithmetic of modular clones using Montgomery’s idea.
zelog/ — The arithmetic of clones with Zech’s logarithms. Ev-
ery finite field with p™ elements such that 3 < p™ <
9SIZE SHORT (o be cloned with this arithmetic.
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5.3 Generic functions

5.3.1 Ring initialization

The zer directory contains the ring initialization functions.

ring.c contains the initialization procedures for generic functions
for polynomials, matrices, and series. It also provides some
basic operations that are called by every ring initialization
functions.
base_ring.c  contains the ZENBaseRingCreate() function, which chooses
the best arithmetic to use.
ext_ring.c contains the ZENExtRingCreate() function, which chooses
the best arithmetic to use (for the moment, there is only
one (the zext arithmetic, but this should be sufficient as it
uses the underlying arithmetic operations).
clone_ring.c  contains the ZENRingClone() function, which chooses the
best arithmetic to use, when precomputations are allowed.

5.3.2 Extensions

The zext arithmetic provides generic operations for extensions over a previuously
defined ZENRing. It interfaces the polynomials operations of the basic rings with
the element operations of the new extension. Using ze2 for instance, this gives
efficient operations in every characteristic 2 finite field at no extra cost.

5.3.3 General functions

The zeg directory provides all types of operations for polynomials, matrices,
series and elliptic curves. These operations can be used as is in every case (even
the future arithmetics). However, the main goal of specific arithmetics is to
provide faster functions in some cases.

5.3.4 Default functions

The zed directory provides generic data structures of polynomials, matrices and
series. However, the main goal of specific arithmetics may be to provide better
data structure in some cases.

5.4 Arithmetics

5.4.1 Modular rings

The arithmetic zep is devoted to modular arithmetic with unlimited size mod-
ulus. It is called by ZENBaseRingCreate() function when none of the following
arithmetics is available or pertinent. In this arithmetic, an element is stored as
a BigNum and the operations are mainly the modular operations provided by
the zbn operations.
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5.4.2 Modular rings with small modulus

When the modulus is small, it is unefficient to use the heavy BigNum represen-
tation. The arithmetic zeps provides modular arithmetic when the modulus fits
in a single computer word (BigNumDigit). It is called by ZENBaseRingCreate()
function when this condition is true, that is to say when the modulus is strictly
less than the following bounds:

65536 for a 16-bits computer, (but we have never
tested the library in this case)
4294967296 for a 32-bits computer,
18446744073709551616 for a 64-bits computer.

In this arithmetic, an element is also stored as a BigNumDigit and the operations
are mainly the modular operations provided by the standard C syntax.

5.4.3 T, case

The binary case must be implemented in a very different way than the previous
ones, in order to be efficient. The arithmetic ze2 can be called by ZENBaseRingCreate()
function. The element arithmetic is trivial, but the main differences appear in
polynomial and matricial functions. These mathematical objects are stored in
BigNums, and the corresponding operations directly use the zbn functions.

5.4.4 Rationals

The arithmetic zef is quite different than the previous ones. It is only experimen-
tal. It provides a double BigNum structure for fractions (based on classical nu-
merator /denominator representation) and the corresponding operations based
on zbn functions. There is a lot of compatibility problems with this arithmetic,
and efficiency is not guarenteed but it may be useful for ponctual applications.

5.4.5 Clones

The purpose of clones is to perform when it is possible some precomputations
in order to speed up arithmetic. These precomputations are made upon initial-
ization and can take some time. Therefore, cloning can be efficient only if a lot
of operations are performed.

5.4.5.1 Tabulated clone

A small finite ring can be cloned using the index representation. All the elements
Z of a ZENRing R are represented in the clone C obtained from R by the result
(n,nl) of ZENEItToZ(n,p-nl,Z,R). That is to say, each element of a ring is ordered
by the integer value it takes once evaluated in the characteristic.

Addition, multiplication, negation and inversion are tabulated at the initial-
ization. Therefore, all the subsequent operations will take constant time. The
limit size is that of an unsigned char, that is to say 256 elements. Polynomials
and matrices use also the same representation which saves memory .
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5.4.5.2 Logarithm clone

A small finite field F can be cloned using the logarithm representation. The
first operation performed is to find a generator a of the finite field. Then, a
table of all the logarithms is computed. The adopted representation in ZEN is
the following;:

Element of F — ZEN representation

0 — 0
1 — 1
a — 2
% — i+1

Hence, multiplication and inversion are easily performed by a modular addition
on the exponent, assuming that a first test of equality to zero is performed on
each operand:

atxal - (i+1)+(G+1)—1
(@)™ = —(i+1)+2

For negation, the table of this operation is computed at the initialization of
the clone. For addition, another table is computed that stores all the exponent
of each element incremented by one. Addition of two elements can then be
performed by a multiplication using the formula

a+aod =a'(14+a7Y).

The limit size is that of an unsigned short, that is to say at most 65536 elements.
Polynomials and matrices use also the same representation which saves memory.

5.4.5.3 TUse of chinese remainder theorem

A ZENRing can be built upon two ZENRings using the Chinese remainder the-
orem.

Theorem Let m andn be two natural integers, m prime with n. The two rings
Z/(mn)Z and 7./ 7, %X L] .7, are isomorphic. More precisely, the application

z +— (z mod m,z modn)

is isomorphic and its reciprocal is

! mod n) mod mn.

07z, 2n) = Tn(n~! mod m) + z,m(m™

The same kind of result can be stated for polynomials.

The implementation of these results in ZEN is more general: one can use
N ZENRings to build the two isomorphics ZENRings. The N ZENRings must
be of same level (N modular rings, or N extensions over same ring). The
representation of an element in such a ring, is the N-array of the N projections
of this element in the IV subrings.

The function ZENChineseRingCreate() performs such a construction.
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5.5 Testing the library

When adding some new arithmetics to ZEN, it is necessary to test these new
features. This is done using the standard zentest program.

At the compilation time, a test program is compiled. To use it, you only
have to type bin/arch/zentest. This program tests all the functions of the library
(and so can take time ...).

The five sets of procedures are tested. That is to say:

e Functions on elements.
e Functions on polynomials.
e Functions on matrices.

Functions on series.

e Functions on elliptic curves.

The procedures of this program are not in libzen.a but can be good examples
of procedures written with ZEN functions. The same tests are performed for
different finite rings following user options specified at the execution of the
process. For a detailed description of these options, type bin/arch/zentest -h.



Appendix A

Installing ZEN

A.1 The principle

You probably got the ZEN package via anonymous ftp in a file probably named
something like ZEN .x.y.tgz. The compilation of ZEN needs the package ZMAKE
which should be available via anonymous ftp too. Then, what you have to do
is:

1. To decompress ZEN .x.y.tgz at the same level as ZMAKE with
$ gzip -d < ZEN.x.y.tgz [tar xvf - .

2. To go in the ZEN directory with
$ cd ZEN.x.y.

3. To compile with
$ make.

4. To get the documentation with
$ make doc.

At the end of step 3, a library file libzen.a is compiled in lib/arch where
arch depends on your system and the file zen.h is in include. Moreover, test
executables are in bin/arch.

At the end of step 4, the user manual is in the file doc/dvi/doc.dvi. Moreover,
you can possibly get the “advanced user manual” in the file doc/dvi/advanced.dvi
after make adoc.

Figure A.1 enumerates the currently tested architectures. Usually, the op-
eration sequence of figure A.2 will produce the library without problems.
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Vendor Processor Operating system Compilers
SUN sparc Solaris cc,gec
DEC alpha OSF cc, gee
HP PA-RISC HP-UX cc, gee
IBM RS6000 ATX cc, gee
PC 486 linux gee

Windows 95/98/2000/NT  gcc (cygnus)

Figure A.1: Portability of ZEN

A.2 Configuring the compiler options

It is possible to configure the compiler options you need for your convenience.
The file used for that is site.h in zmake. It contains a few flags that can be set to
YES or NO in order to activate or not the corresponding feature. This file is read
at the very beginning of the compilation sequence by the zmake. Therefore, it
should be edited before this command. The following are the compilation flags
defined:

OptimizingCode
DebuggingMalloc
ProfilingCode
UseAssembler

UseLonglLong
ExpandingNames

HasPurify

HasOMP

HasLargeTmp

use the compiler optimizer, and skip some parts
of testing code inside the library

use debugging features like -fbounds-checking or
Purify.

use the compiler profiling options

use the assembler opcodes whenever it’s possible
use the long long type if available

output filenames can indicate which of the op-
tions where used. This is useful especially if you
want to keep a debugging and an optimized ver-
sion of the library

If you intend to use Purify, you can raise
this flag. Otherwise -fbounds-checking is used
with gcc. This flag is only significant when
DebuggingMalloc is raised.

If you intend to use compile C Open MP pro-
grams, you can raise this flag.

large tmp is available

A.3 Customized memory allocation functions

Following a GMP mechanism, we allows customized allocation functions.
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OPERATIONS SEQUENCE

SHELL COMMAND

Local parameters configuration

File editing of site.h
in zmake

Library compilation

make

|
I
1

Cleaning unnecessary files

make clean

v

Removing all compiled files including library

make tidy

Figure A.2: Compilation of the library.
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Procedure 319 Allocating memory

void * ZENMalloc(size)
size_t size;

Input: The size of memory to allocate
Output: A pointer on the allocated array or NULL if an error occured.
Note: This macro is used in the whole ZEN and ZENFACT libraries
when memory allocation is needed. By default, a call to the
native malloc function is performed. This can be overwritten
by ZENSetMemoryFunctions.

Procedure 320 Reallocating memory

void * ZENRealloc(oldptr,newsize)
void * oldptr;
size_t newsize;

Input: The pointer to a previously allocated memory array, ob-
tained by ZENMalloc , and the new size needed.
Output: A pointer on the newly allocated array, or NULL if an error
occured.
Side effect: The values stored in the first array designed by oldptr are
copied in the new array.

Note: This macro is used in the whole ZEN and ZENFACT libraries
when memory reallocation is needed. By default, a call to the
native realloc function is performed. This can be overwritten
by ZENSetMemoryFunctions.

Procedure 321 Freeing memory

void ZENFree(ptr)
void * ptr;

Input: A pointer to a previously allocated memory array, obtained
by ZENMalloc.

Side effect: The memory pointed to by ptr is freed.

Note: This macro is used in the whole ZEN and ZENFACT libraries
when freeing memory is needed. By default, a call to the
native free function is performed. This can be overwritten
by ZENSetMemoryFunctions.
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Procedure 322 Setting custom memory allocation functions

void ZENSetMemoryFunctions(ma,re,fr)
void * (* ma) ___((size_t));
void * (* re) ___((void *, size_t));
void (*x fr) ___((void *));

Input: The three memory allocation functions performing malloc,
realloc, and free.
Side effect: The internal memory allocation functions are customized
Note: By default, the standard malloc, realloc, and free functions
are used. This function should be called at the very beginning
of a program.
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Appendix C

Concepts index

ZENMalloc(size), 130
ZENRealloc(oldptr,newsize), 130

ZBNPutToStringLazy(n,nl), 115
ZBNReadFromFile(p_n, p_nl, file,

zbnadd(cl, c0, al, a0, b1, b0), 97 base), 117

zbndiv(q, r, n1, n0, d), 98 ZBNReadFromFileLazy(n, nl, file,
zbnmul(cl, 0, a, b), 98 base), 117

zbnrandom(), 103 ZBNReadFromString(p-n, p_nl,
zbnsrandom(seed), 103 s, base), 115

zbnsub(cl, ¢0, al, a0, b1, b0), 97 ZBNReadFromStringLazy(m, ml,
zbnwght(w, d), 98 s, base), 115

ZBNSetToOne (n, nl), 102

big integers ZBNSetToZero (n, nl), 102

ZBNAnd(m, n, nl), 105
ZBNKaratsubaMultiplyCutoff(size),
112
ZBNKaratsubaSquareCutoff(size),
112
ZBNOr(m, n, nl), 105
ZBNXor(m, n, nl), 106
addition
ZBNAdd (m, ml, n, nl, carry),
106
ZBNAddCarry(m, ml, carry),
106
assignation
ZBNAssign(m, n, nl), 102
ZBNSetRandom(n, nl), 103
comparison
ZBNAreEqual(m, ml, n, nl),
104
conversion
ZBNPrintToFile(file,n,nl,base),
116
ZBNPrintToString(n,nl,base), 114
ZBNPutToFile(file,n,nl), 117
ZBNPutToFileLazy(file,n,nl), 117
ZBNPutToString(n,nl), 116
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ZENZToEIt(G, p, pl, Rg), 41
ZENZToPoly(p, pl, Rg), 55
create
ZBNC(nl), 99
ZBNCompare(m, ml, n, nl), 104
ZBNCompareLazy(m, ml, n, nl),
105
digit
ZBNDigit(n,i), 101
assignation, 100
conversion, 100
division, 113
greatest common divisor, 117
length, 99-101
multiplication, 109
weight, 120
division
ZBNDivide(n, nl, d, dl), 113
freeing memory
ZBNF(n), 99
greatest common divi-
sor
ZBNEea(g, p-gl, a, p-al, n, nl,
m, ml), 118
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ZBNGcd(g, p-gl, n, nl, m, ml),
117
input/output
ZBNGetFromFile(p-n, p-nl, file),
117
ZBNGetFromFileLazy(n, nl, file),
117
ZBNGetFromString(p-n, p-nl,
s), 116
ZBNGetFromStringlLazy(n, nl,
s), 116
length
ZBNSizeBufKaraM(l), 111
ZBNSizeBufKaraS(l), 112
logarithm
ZBNLog(n, nl), 113
modular
addition, 119
modular reduction, 118
multiplication, 119
negation, 119
square, 120
subtraction, 119
multiplication
ZBNMult(n, a, al, b, bl), 110
ZBNMultiply(p, pl, m, ml, n,
nl), 109

ZBNMultiplyKaratsuba(x,xl,a,al,b,bl,lim),
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ZBNSubtract(m, ml, n, nl, carry),
107
ZBNSubtractBorrow(m, ml, carry),
107
test
ZBNIsOne (n, nl), 104
ZBNIsZero (n, nl), 103
weight
ZBNWeight(n, nl), 120

debugging
ZENError (), 22
ZENSetError(arit,function,error),
22
_ZENERR(), 23
_ZENNULL(), 23

elements
addition
ZENEItAdd(b, a, Rg), 36
assignation
ZENEltAssign(a, b, Rg), 33
ZENEItSetNext(a, Rg), 34
ZENEItSetRandom(a, Rg), 34
comparison
ZENEItAreEqual(a, b, Rg), 35
conversion
ZENCloneToElt(B, C, Rg), 42
ZENEItConvert(el,R1,e2,R2), 35
ZENEItFromBigNum(e,n,nl,R),

ZBNMultiplyKaratsubaBuffer(x,a,al,b,bl,buf,lim 4

111
negation
ZBNComplement(n, nl), 107
root
ZBNSqrt(r, a, al), 114
shifting
ZBNAnyShiftLeft(r, p_rl, n, nl,
nnn), 108
ZBNAnyShiftRight(n,nl,nnn), 109
ZBNShiftLeft(n, nl, 1), 108
ZBNShiftRight(n, nl, 1), 108
square
ZBNSqu(n, a, al), 110
ZBNSquare(n, nl, a, al), 110

ZBNSquareKaratsuba(x,xl,a,al,lim),

111

ZENEItPrintToFile(file, G, base,
Rg), 40
ZENEItPrintToString(G, base,
Rg), 39
ZENEItPutToFile(file, G, Rg),
41
ZENEItPutToString(G, Rg), 40
ZENEItReadFromFile(G, file, base,
Rg), 39
ZENEItReadFromString(G, s, base,
Rg), 39
ZENEItSet ToGenerator(a, Rg),
34
ZENEItSetToOne(a, Rg), 33
ZENEItSetToZero(a, Rg), 33
ZENEItToZ(p, p-pl, G, Rg), 41

ZBNSquareKaratsubaBuffer(x,a,al,buf,lim),create

111
subtraction

ZENEItAlloc(a, Rg), 32
exponentiation



ZENEItExp (R, k, kI, P, Rg),
37
freeing memory
ZENEItFree(a, Rg), 33
input/output
ZENEItGetFromFile(G, file, Rg),
40
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create, 82

double, 86

freeing memory, 82
input/output, 88-90
multiplication, 86, 87
negation, 86
subtraction, 85

ZENEItGetFromString(G, s, Rg), test, 84
40
inverse ﬁeld_s, see rings
ZENEltinverse(b, a, Rg), 37 freeing memory
multiplication ZENFree(ptr), 130
ZENEItMultiply(c, a, b, Rg), .
37 P 2 matrices
negation ZENMatNbCol(M,R), 56

ZENEItNegate(b, a, Rg), 36
root
ZENEItSquareRoot(R, P, Rg),
38
square
ZENEItSquare(b, a, Rg), 37
subtraction
ZENEItSubtract(b, a, Rg), 36
test
ZENEIltIsASquare(a, Rg), 36
ZENEItlsOne(a, Rg), 35
ZENEltlsZero(a, Rg), 35
trace
ZENEItAbsoluteTrace(e, f, Rg),
38
ZENEItTrace(b, a, Rg), 38

elliptic curves

ZENECcA1(E), 80
ZENECA2(E), 81
ZENECA3(E), 81
ZENECA4(E), 81
ZENECA6(E), 81
ZENEcD(E), 81
ZENEclnitialize(E,al,a2,a3,a4,a6),
80
ZENECJ(E), 82
create
ZENEcAlloc(E,Rg), 80
freeing memory
ZENEcFree(E), 80
points
addition, 85, 87
assignation, 82-84
comparison, 84

ZENMatNbRow(M,R), 56
addition
ZENMatAdd(A,B,R), 63
ZENMatAddScalar(A,b,R), 63
assignation
ZENMatAssign(A,B,R), 59
ZENMatGetSubMat(S,M,r,c,R),
61
ZENMatSetRandom(M,R), 59
ZENMatSetSubMat(M,r,c,S,R),
60
coefficients
assignation, 60, 61
comparison
ZENMatAreEqual(A,B,R), 62
ZENMatAreSameType(A,B,R),
56
conversion
ZENMat2Vect(M,m,R), 71
ZENMatConvert(M1,R1,M2,R2),
70
ZENMatPrintToFile(file,r,base,Rg),
68
ZENMatPrint ToString(r,base,Rg),
67
ZENMatPutToFile(file,r,Rg), 69
ZENMatPutToString(r,Rg), 69

ZENMatReadFromPFile(r,file,base,Rg),

68

ZENMatReadFromString(r,s,base,Rg),

68
ZENMatSetToOne(M,R), 59
ZENMatSetToZero(M,R), 59
ZENVect2Mat(m,M,R), 70

create
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ZENMatAlloc(M,r,c,R), 56
ZENMatColAlloc(M,r,c,R), 57
ZENMatRowAlloc(M,r,c,R), 57
determinant
ZENMatDet(D,det.R), 66
duplication
ZENMatCopy(M,R), 58
freeing memory
ZENMatFree(M,R), 58
gaussian elimination
ZENMatGaussPlain(D,S,P,p_rk,R),
65
input/output
ZENMatGetFromFile(r.file,Rg),
69
ZENMatGetFromString(r,s,Rg),
69
inverse
ZENMatlnverse(l,M,R), 66
kernel
ZENMatKernel(K,M,R), 67
multiplication
ZENMatMultiply(X,A,B,R), 64
ZENMatMultiplyPlain(X,A,B,R),
64
ZENMatMultiplyScalar(A,b,R),
64
ZENMatWinograd(X,A,B,R), 64
negation
ZENMatNegate(A,B,R), 63
permutation
create, 57, 58
permuting
ZENMatPermuteCol(M,c1,c2,R),
62
ZENMatPermuteRow(M,r1,r2,R),
61
rank
ZENMatRank(D,p_rk,R), 66
subtraction
ZENMatSubtract(A,B,R), 63
test
ZENMatlsOne(M,R), 62
ZENMatlsPermutation(M,R), 55
ZENMatlsRowType(M,R), 55
ZENMatlsZero(M,R), 62
transpose
ZENMatTranspose(M,R), 67

optimization, 23, 90

APPENDIX C. CONCEPTS INDEX

ZENSetMemoryFunctions(ma,re,fr),
131
clones
ZENRingClone(Rg, cln), 95
assignation, 93, 94
conversion, 42
flags, 95
freeing memory, 28
test, 94
precomputations
ZENRingAddPrc(Rg, Prc), 92
ZENRingRmPrc(Rg, Prc), 93
assignation, 90, 91
flags, 92, 93
test, 91

polynomials
addition
ZENPolyAdd(RX, PX, Rg), 47
assignation
ZENPolyAssign(RX, PX, Rg),
44
ZENPolySetRandom(RX, deg,
Rg), 45
coefficients
assignation, 45, 46
comparison
ZENPolyAreEqual(RX, PX, Rg),
46
conversion
ZENPolyConvert(P1, R1, P2,
R2), 46
ZENPolyPrintToFile(file, PX, base,
Rg), 52
ZENPolyPrintToString(PX, base,
Rg), 51
ZENPolyPutToFile(file, PX, Rg),
53
ZENPolyPutToString(PX, Rg),
52
ZENPolyReadFromFile(PX, file,
base, Rg), 51
ZENPolyReadFromString(PX, s,
base, Rg), 51
ZENPolySetToXi(RX, deg, Rg),
45
ZENPolySetToZero(RX, Rg), 44
ZENPolyToZ(p_pl, P, Rg), 55
create



ZENPolyAlloc(PX, deg, Rg),
43
degree
ZENPolyDeg(PX, Rg), 43
ZENPolyUpdateDegree(RX, Rg),
46
derivation
ZENPolyDerive(RX,PX,Rg), 53
division
ZENPolyDivide(RX, MX, PX,
QX, Rg), 49
duplication
ZENPolyCopy (PX, Rg), 44
evaluation
ZENPolyEval(f, PX, e, Rg), 49
freeing memory
ZENPolyFree(PX,Rg), 44
greatest common divi-
sor
ZENPolyExtGed (1X0, BX0, AXO0,
Rg), 50
ZENPolyGcd (RX, PX, QX, Rg),
50
input/output
ZENPolyGetFromFile(PX, file,
Rg), 53
ZENPolyGetFromString(PX, s,
Rg), 52
length
ZENPolyLgt(PX, Rg), 43
monic
ZENPolyMakeMonic (RX, PX,
Rg), 49
multiplication
ZENPolyMultiply(RX, PX, QX,
Rg), 48
ZENPolyMultiplyScalar(RX, PX,
e, Rg), 48
negation
ZENPolyNegate(RX, PX, Rg),
47
resultant
ZENPolyResultant(Res, A, B,
Rg), 50
root
ZENPolyRootsCanonical(roots,
gamma, Rg), 54
ZENPolyRootsDegree2(roots, P,
Rg), 54
scalar product
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ZENPolyDot(e, PX, QX, Rg),
49
square
ZENPolySquare(RX, PX, Rg),
48
subtraction
ZENPolySubtract(RX, PX, Rg),
48
test
ZENPolylsXi (PX, deg, Rg),
47
ZENPolylsZero(RX, Rg), 47

rings, 19
ZENRingDef(Rg), 31
ZENRingExt(Rg), 32
ZENRingP(Rg), 30
ZENRingPI(Rg), 30
ZENRingPol(Rg), 31
ZENRingQ(Rg), 30
ZENRingQI(Rg), 31
comparison
ZENRingAreEqual(R1,R2), 96
conversion
ZENRingPrintToFile(file, Rg),
29
ZENRingReadFromFile(Rg, file),
29
create
ZENBaseRingAlloc(R, n, nl),
28
ZENExtRingAlloc(Ex, P, Rg),
28
ZENRingChinese(R, N, PR), 96
degree
ZENRingDeg(Rg), 31
duplication
ZENRingCopy(R) , 29
factorization
ZENRingFact(Rg), 32
freeing memory
ZENRingClose(Rg) , 28
ZENRingFullClose(Rg) , 29
length
ZENRingSizeElt(Rg), 30

series
addition
ZENSrAdd(RX, PX, Rg), 75
assignation
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ZENSrAssign(RX, PX, Rg), 73 ZENSrSubtract(RX, PX, Rg),
ZENSrSetRandom(RX, val, deg, 75
Rg), 73 test
coefficients ZENSrIsZero(RX, Rg), 75
assignation, 73, 74 valuation
comparison ZENSrUpdateValuation(RX, Rg),
ZENSrAreEqual(RX, PX, Rg), 74
74 ZENSHVal(PX, Rg), 72
conversion syntax, 21
ZENSrPrintToFile(file, PX, base,
Rg), 78 types, 15
ZENSrPrintToString(PX, base,
Rg), 77
ZENSrPutToFile(file, PX, Rg),
79

ZENSrPutToString(PX, Rg), 78
ZENSrReadFromFile(PX, file,
base, Rg), 77
ZENSrReadFromString(PX, s,
base, Rg), 77
ZENSrSetToZero(RX, Rg), 73
create
ZENSrAlloc(S,length, Rg), 71
degree
ZENSrDeg(PX, Rg), 71
division
ZENSrDivide(RX, PX, QX, Rg),
76
duplication
ZENSrCopy (PX, Rg), 72
freeing memory
ZENSrFree(PX,Rg), 72
input/output
ZENSrGetFromFile(PX, file, Rg),
79
ZENSrGetFromString(PX, s, Rg),
78
length
ZENSrLgt(PX, Rg), 72
multiplication
ZENSrMultiply(RX, PX, QX,
Rg), 76
ZENSrMultiplyScalar(RX, PX,
e, Rg), 76
negation
ZENSrNegate(RX, PX, Rg), 75
square
ZENSrSquare(RX, PX, Rg), 76
subtraction



