ZEN

A new toolbox for computing in finite
extensions of finite rings

ZENFACT

Factorization of polynomials

F. Chabaud
fchabaud@free.fr
R. Lercier
lercier@celar.fr

DCSSI
18 rue du Dr. Zamenhoff
92131 Issy-les-Moulinaux
France

Centre d’Electronique de ’Armement
CASSI/SCY/EC

35998 Rennes Armées

France

December 17, 2000

Some parts of this work was performed during Ph.D thesis of the authors,
respectively at “Laboratoire d’Informatique de I’Ecole Normale Supérieure -
Paris 75230 Cedex 05” and “Laboratoire d’Informatique de I’Ecole Polytech-
nique - Palaiseau 91128 Cedex”. These two institutions are affiliated to the
“Centre National pour la Recherche Scientifique”.






Contents

1 Introduction — Example
1.1 Preliminaries . ... ..
1.2 Measures of efficiency .
1.3 Building the finite fields

1.3.1 Extensions of Fs

1.3.1.1 Standard representation . . . . . . ... ... ..

1.3.1.1.1
1.3.1.1.2

Precomputations . . . . . .. ... ...
More efficient representations . . . . . .

1.3.1.2 Doubleextension. . . . ... ... ........

1.3.2 Modular field F,

1.3.2.1 Standard representation . . . . . . .. ... ...
1.3.2.2 Montgomery’s representation . . . . . ... ...

1.4 Compilation . . . . . ..
1.5 Results. ... ......
1.5.1 Simple extension
1.5.2 Double extension

1.5.2.1 First extension of degree 8 . . . . .. ... ...
1.5.2.2 First extension of degree 16 . . . . . . .. .. ..

2 Enumerating the functions of ZENFACT

2.1 Roots of polynomials. .
2.2 Polynomial factorization.
2.3 Irreducible polynomials.

2.3.1 Low-level irreducibility functions . . . . . ... ... ...

2.4 Pseudo-prime integers. .
2.5 Finite field construction

A Bibliography

17
17
21
25
25
30
32

35



CONTENTS



Chapter 1

Introduction — Example

All the procedures described here form the libzenfact.a library. These procedures
are all macros defined in zenfact.h. The installation procedure is the same as
that for ZEN.

See the “user manual” of ZEN for more details on the following compilation
procedure.

1. To decompress ZENFACT .x.y.tgz at the same level as ZMAKE with
$ gzip -d < ZENFACT .x.y.tgz [tar xvf .

2. To go in the ZENFACT directory with
$ cd ZENFACT .x.y.

3. To compile with
$ make.

4. To get the documentation with
$ make doc.

The purpose of ZENFACT is to provide functions that can be used in any
ZENRing. These functions are generic and do not depend on the representation
used. They constitute a good example of what can be done using ZEN.

We now give an example of program that use some features of ZENFACT, in
order to obtain different representations of finite fields. This example can also
be used to understand the use of precomputations and clones in ZEN.

The purpose of this program is to perform a bench test of low level compu-
tations in some finite fields, using different representations.

1.1 Preliminaries

The first thing to do is to include some standard libraries header files. We here
include the ZENFACT header file, as the procedures to find polynomials in order
to represent extensions are in this package.

#include <stdlib.h>
#include <stdio.h>
#include "zen.h"



6 CHAPTER 1. INTRODUCTION — EXAMPLE

#include "zenfact.h"

Contrary to our first example in ZEN’s user manual, we here try to define
every structure we use dynamically. Hence, we need some variables that we
declare global for simplicity.

int DEG,EXT;

1.2 Measures of efficiency

Procedure 1 Bench function

void TestComputation(R)
ZENRing R;

Input: A ZENRing.
Side effect: We here perform our test which consists in computing y =
azx + b for a certain number of random variables.

As the representation will differ, the number of tests must be large enough
to decrease the variability of speed due to the repersentation of an element.

#ifndef NBTESTS
# define NBTESTS 1000
#endif

We use a table of ZENEIt because we want to separate the allocation and
definition of variables from operation itself.

ZENE1t Y,A[NBTESTS+2];
int i;
double tt;

We will use a sliding method to perform computation. The tests will be as
follows:

Yo = @apai1 +aq
Y1 = aia2 +asg
Y2 = QG203 + a4
Yn = QpQp41 + QAp42

This method saves memory for computers that lacks some. We first define the
operands and give time used by this operation.



1.3. BUILDING THE FINITE FIELDS 7

ZENE1tAlloc(Y,R);
tt=runtime();
for (i=0; i<NBTESTS+2;i++)
{
ZENEltAlloc(A[i],R);
ZENEltSetRandom(A[i],R);
}
tt=runtime()-tt;
printf("%d allocations : %f ms CPU/allocation\n",i,tt/i);

We now perform the test itself.

tt=runtime() ;
for (i=0; i<NBTESTS;i++)
{
ZENE1tMultiply(Y,A[i+1],A[i],R);
ZENE1tAdd(Y,A[i+2],R);
}
tt=runtime()-tt;
printf("%d tests : %f ms CPU/test\n",i,tt/i);

We endly free the memory we used

for (i=0; i<NBTESTS+2;i++)
ZENE1ltFree(A[i],R);
ZENE1tFree(Y,R);

1.3 Building the finite fields

What seems interesting is to compare the speed of computations in fields of
almost the same cardinality, mainly for a given prime p, F, and Fouog,». We
also need to compare the different representations provided by clones and see
the impact of precomputations.

The beginning of the program is somehow now classical and should not need
explanation.

int main()

{
BigNumDigit q=2;
BigNum p;
BigNumLength pl;
ZENRing R,E,E1,C1,E2,EC2;
ZENPoly P,P2;
ZENCln cln;
ZENPrc prc;
double tt;
char *poly2;



8 CHAPTER 1. INTRODUCTION — EXAMPLE

tt=runtime() ;
As g is a BigNumDigit, hence &q is a BigNum
ZENBaseRingAlloc(R,&q, (BigNumLength)1) ;

tt=runtime()-tt;
printf ("GF(2) built in %f s CPU\n",tt/lOO0.0);

We now ask interactively the size of number we want (logp).

printf ("Enter the logarithm of field size\n");
scanf ("%d4d",&DEG) ;

1.3.1 Extensions of Fy
1.3.1.1 Standard representation

We first try to define an extension using a truly random irreducible polynomial.

ZENPolyAlloc(P,DEG,R);

tt=runtime() ;

ZENPolySetRandomIrreducible(P,DEG,R);

tt=runtime()-tt;

printf ("Irreducible polynomial found in %f s CPU\n",
tt/1000.0);

printf ("P(X)=");

ZENPolyPrintToFile(stdout,P,10,R);

printf ("\n");

tt=runtime();

ZENExtRingAlloc(E,P,R);

tt=runtime () -tt;

printf ("Extension built in %f s CPU\n",tt/1000.0);

ZENPolyFree(P,R);

We have our first ring, so we can perform our test.

TestComputation(E);

1.3.1.1.1 Precomputations

We now perform precomputations in order to speed operations. Performing
all precomputations is certainly a waste of time in this case, but that’s simpler.
We first make precomputations on Fs.

ZENPrcSetNone(prc) ;

ZENPrcSet (prc,ZENPRC_ELT MULTIPLY) ;
ZENPrcSet (prc,ZENPRC FINITE FIELD) ;
tt=runtime();
ZENRingAddPrc(R,prc);



1.3. BUILDING THE FINITE FIELDS 9

tt=runtime()-tt;
printf ("Precomputations on GF(2) done in %f s CPU\n",tt/1000.0);

TestComputation(E) ;

Now, we can make precomputations on the extension and see the result, that
should be more impressive.

tt=runtime() ;

ZENRingAddPrc(E,prc);

tt=runtime () -tt;

printf ("Precomputations on GF(2"%d) done in %f s CPU\n",
DEG,tt/1000.0);

TestComputation(E) ;

1.3.1.1.2 More efficient representations
We will now see the effect of using an irreducible polynomial of the form
X2 4 f(X) for the representation of Fya, with f of small degree.

ZENRingClose(E);

ZENPolyAlloc (P,DEG,R);

tt=runtime() ;

ZENPolySetGoodIrreducible(P,DEG,R) ;

tt=runtime()-tt;

printf("Suited irreducible polynomial found in %f s CPU\n",
tt/1000.0) ;

printf ("P(X)=");

ZENPolyPrintToFile(stdout,P,10,R);

printf ("\n");

tt=runtime() ;

ZENExtRingAlloc(E,P,R);

tt=runtime()-tt;

printf ("Extension built in %f s CPU\n",tt/1000.0);

ZENPolyFree(P,R);

TestComputation(E);

It is worthwile to perform precomputations even when the representation is
optimal.

tt=runtime() ;

ZENRingAddPrc(E,prc);

tt=runtime()-tt;

printf ("Precomputations for GF(2°%d) done in %f s CPU\n",
DEG,tt/1000.0);



10 CHAPTER 1. INTRODUCTION — EXAMPLE

TestComputation(E) ;

1.3.1.2 Double extension

We now try another representation for this field, using a double extension, that
is to say we build

F X/ Q(x)

with Q(X) of degree d/e. We compute the first extension using the best possible
polynomial of the above form. Note that EXT is the value of e and is asked
interactively.

ZENPolyAlloc(P,EXT,R);

tt=runtime();

ZENPolySetSmallestIrreducible(P,EXT,R);

tt=runtime()-tt;

printf ("Best irreducible polynomial found in %f s CPU\n",
tt/1000.0);

printf ("P1(X)=");

ZENPolyPrintToFile(stdout,P,10,R);

printf ("\n");

tt=runtime() ;

ZENExtRingAlloc(E1,P,R);

tt=runtime()-tt;

printf ("Extension built in %f s CPU\n",tt/1000.0);

ZENPolyFree(P,R);

We here prepare also the optimization of this second representation, using
clones. If e is small enough, then the tabulation of operations can be performed,
which could possibly give faster operations for the double extension representa-
tion.

ZENC1nSetAl1l(cln);

tt=runtime();

C1=ZENRingClone(E1l,cln);

tt=runtime () -tt;

printf("Clone of GF(2"%d) done in %f s CPU\n",
EXT,tt/1000.0);

We now build the second extension using a scheme now classical.

ZENPolyAlloc (P2,DEG/EXT,C1);

tt=runtime() ;

ZENPolySetRandomIrreducible(P2,DEG/EXT,C1);

tt=runtime()-tt;

printf ("Irreducible polynomial found in %f s CPU\n",
tt/1000.0);



1.3. BUILDING THE FINITE FIELDS 11

We here use a string representation of the polynomial because the internal
representation will be different in the clone.

poly2=ZENPolyPrintToString(P2,10,C1);
printf ("P2(X)= %s\n",poly2);
ZENPolyFree(P2,C1);

We first use the normal representation of Fae.

ZENPolyReadFromString(P2,poly2,10,E1);
tt=runtime() ;

ZENExtRingAlloc(E2,P2,E1);

tt=runtime()-tt;

ZENPolyFree(P2,E1);

printf ("Extension built in %f s CPU\n",tt/1000.0);

TestComputation(E2) ;
ZENRingClose(E2) ;

And now we use the clone as basis for our extension.

ZENPolyReadFromString(P2,poly2,10,C1);

tt=runtime() ;

ZENExtRingAlloc(EC2,P2,C1);

tt=runtime()-tt;

printf ("Extension on clone built in %f s CPU\n",
tt/1000.0);

TestComputation(EC2) ;

As this clearly will be the fastest representation for double extension, we
take the time to perform precomputations on both the clone and the second
extension itself.

tt=runtime() ;

ZENRingAddPrc(C1,prc);

tt=runtime()-tt;

printf ("Precomputations on clone of GF(2"%d) done in %f s CPU\n",
EXT,tt/1000.0);

TestComputation(EC2) ;

tt=runtime();

ZENRingAddPrc (EC2,prc);

tt=runtime()-tt;

printf ("Precomputations on GF(2°%d) done in %f s CPU\n",
DEG,tt/1000.0);

TestComputation(EC2);
ZENRingClose (EC2) ;



12 CHAPTER 1. INTRODUCTION — EXAMPLE

We continue to test different representations, using good polynomials. As
this is always based on the same schemes, we skip this part of the program in
the documentation.

1.3.2 Modular field F,
1.3.2.1 Standard representation

We now find a random prime of the good size.

tt=runtime() ;
pl=divSizeBloc (DEG-1)+1; gives the number of digits
p=ZBNC(pl);
ZBNSetRandom(p,pl) ;
plpl-1] |= BlocExp2(modSizeBloc(DEG-1));
ensure the good number of bits
ZBNNextPrime (&p,&pl) ;
tt=runtime()-tt;
ZBNPrintToFile(stdout,p,pl,10);
printf ("\nPrime of %d bits found in %f s CPU\n",DEG,tt/1000.0);

We don’t test whether the number of bits has changed, because for large
numbers, the probability to have a carry is small. We can now build the modular
field F, = Z/pZ'

ZENBaseRingAlloc(R,p,pl);
TestComputation(R);

We try to speed up computations using precomputations.

tt=runtime();

ZENRingAddPrc(R,prc) ;

tt=runtime()-tt;

printf ("Precomputations on GF(p) done in %f s CPU\n",
tt/1000.0) ;

TestComputation(R);

1.3.2.2 Montgomery’s representation

We can now try to clone the field. If the prime p is large, this will result in the
use of Montgomery’s representation.

tt=runtime() ;

C1=ZENRingClone(R,cln);

tt=runtime()-tt;

printf("Clone of GF(p) done in %f s CPU\n",tt/1000.0);



1.4. COMPILATION 13

TestComputation(C1);

We also need to use precomputations for the clone, because they are not
done by default for the clone, even if they were done for the initial ring.

tt=runtime() ;

ZENRingAddPrc(C1,prc) ;

tt=runtime()-tt;

printf ("Precomputations on the clone of GF(p) done in %f s CPU\n"
tt/1000.0) ;

TestComputation(C1l) ;

1.4 Compilation

The compilation of this program is done by the standard make command of
zenfact. The options used can give you hints for optimizing your programms on
your architecture.

1.5 Results

We here give an example of what is obtained by the above program. The results
were obtained on a PC running Linux on a P100 with 16 MO RAM, using GMP
with the raised flags HasGce, and OptimizingCode. They are gathered in the
following table.



14 CHAPTER 1. INTRODUCTION — EXAMPLE

| Extension | Fy | Fao24 | CPU time |
| | | | precomputations (s) | operation (ms) |
| [ - 9.6

| | P - - 9.6

| simple | P P 0.21 94

| | P S - 6.8

| | P Sp 0.26 6.7

| | Fas | Fa1024

| | S - - 419

| | C - 7.5 26

| | TP | - 75 26

| |CP | P 79 76

| | S S - 98

| |CP | S 75 12

| | CP | SP 78 12

| double | IF216 ]F21024

| 7S | - - 128

| T - 3 98

| | CP | - 3 98

| |CP | P 3 98

| | S S - 41

| | TP [ S 3 5.2

| | CP | SP 43 5.2

| Modular field | F, | |
| logp=1024 | | precomputations (s) | operation (ms) |
| | - - 0.45

| | P = 0.45

| | C - 0.45

| | C - 0.45

In this table, P stands for the case in which precomputations are done, S
states that an irreducible polynomial of low sub-degree is used, C indicates
a cloning of the ring. The precomputations time don’t take in account the
computations needed to find the definition polynomials. The indicative times
for a standard execution are as follows:

e random irreducible polynomial over Fy of degree 1024 found in 100 s.

e irreducible polynomial over Fy of degree 1024 of small subdegree found in
59 st.

o irreducible polynomial over Fa of degree 8 of smallest subdegree found in
0.01 ¢?

e random irreducible polynomial over Fys of degree 128 found in 625 s.

e irreducible polynomial over Fas of degree 128 of small subdegree found in
16 s.

IThe result was X1024 4 X9 4 X8 4 X7 4 X5 4 X + 1.
2The result was X& + X% + X3 + X + 1.



1.5. RESULTS 15

e irreducible polynomial over Fy of degree 16 of smallest subdegree found
in 0.01 s3.

e irreducible polynomial over Fyis of degree 64 found in 5 s.

e irreducible polynomial over Fyis of degree 64 of small subdegree found in
6 s.

o random prime of 1024 bits found in 166 s*.

1.5.1 Simple extension

Our reference will be standard representation of Faio24 using a random irre-
ducible polynomial P(X) of degree 1024. In this case, initialization is negligi-
ble, and multiplying two elements takes about 10 ms. Precomputations do not
improve a lot this result..

On the contrary, using a special polynom P(X) = X024 4 f(X), we obtain
a gain of about 25%. Precomputing further improves this result to reach an
overall gain of 33%. Thus, one obtain a final CPU time of about 7 ms.

1.5.2 Double extension
1.5.2.1 First extension of degree 8

When using a double extension with a first extension of degree 8, one can notice
that using a small subdegree polynomial and cloning of the first extension results
in a huge gain. Cloning improves performance by a factor 16, whereas using a
special polynomial gives a factor 4. These two factors are not fully cumulative
but the overall gain which is obtained is 34.

1.5.2.2 First extension of degree 16

When using a double extension with a first extension of degree 16, one can notice
the same behaviour as above. Cloning improves performance by a factor 13, and
using a special polynomial gives a factor 3. The overall gain obtained reaches
a factor 25. The final result is better than the standard representation using a
special polynomial by a 25% gain. This confirms a recent result [3]. However,
this result is fully computer dependant. For instance, using a Sparc station, one
will find that the standard representation may be the best (see [1, 2]). Hence,
optimizing the representation of a finite field will depend on the application and
the computer used.

Using ZEN, it will be very easy to optimize the performance, as the program
will remain the same. The only thing to change will be the construction of the
ZENRings.

3The result was X16 + X5 + X3 + X + 1.
4The result was 1018117120175004196033004854358883043002522568550478777151749671718637308792003850754623834779550051¢



16

CHAPTER 1. INTRODUCTION — EXAMPLE



Chapter 2

Enumerating the functions
of ZENFACT

2.1 Roots of polynomials.

These functions aim at finding the roots of any polynomial P. The main function
is ZENPolyRoots that calls the function ZENPolyRootsBerlekamp if its degree is
greater than 2 or ZENPolyRootsDegree2 otherwise.

Procedure 2 Roots of any polynomial.

int ZENPolyRoots(roots, P, Rg)
ZENPoly roots, P;
ZENRing Rg;

Input: Two ZENPoly, P and roots, over a ZENRing Rg.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,
ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: The polynomial roots is set to a polynomial of degree -1,
0,...or degree(P)-1, the coefficients of which are the roots
of P.
Note: roots must be allocated for at least degree of P minus one.
We must have P # roots. Valid only in finite fields.

17



18 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT
Procedure 3 Roots of a polynomial whose degree is equal to its number of

700tS.

int ZENPolyRootsEDF(roots, P, Rg)
ZENPoly roots, P;
ZENRing Rg;

Input: Two ZENPoly, P and roots, over a ZENRing Rg.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,

ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: The polynomial roots is set to a polynomial of degree -1,
0,...or degree(P)-1, the coefficients of which are the roots
of P.
Note: roots must be allocated for at least degree of P minus one.
We must have P # roots. Valid only in finite fields.

Procedure 4 Roots of any polynomial in finite fields of even characteristic.

int ZENPolyRootsBerlekampEvenChar(roots, P, Rg)
ZENPoly roots, P;

ZENRing Rg;
Input: Two ZENPoly, P and roots, over a ZENRing Rg.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,

ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: The polynomial roots is set to a polynomial of degree -1,
0,...or degree(P)-1, the coefficients of which are the roots
of P.
Note: roots must be allocated for at least degree of P minus one.
We must have P # roots. Valid only in finite fields.




2.1. ROOTS OF POLYNOMIALS. 19

Procedure 5 Roots of any polynomial in finite fields of odd characteristic.

int ZENPolyRootsBerlekamp(OddChar (roots, P, Rg)

ZENPoly roots, P;
ZENRing Rg;

Input: Two ZENPoly, P and roots, over a ZENRing Rg.
Output:
ZENERR if an error occured,

ZEN_NO_INVERSE if an inverse was impossible to compute,

ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: The polynomial roots is set to a polynomial of degree -1,
0,...or degree(P)-1, the coefficients of which are the roots
of P.
Note: roots must be allocated for at least degree of P minus one.
We must have P # roots. Valid only in finite fields.

Procedure 6 A root of a polynomial whose degree is equal to its number of

1001S.

int ZENPolyOneRootEDF (root, P, Rg)
ZENE1t root;
ZENPoly P;
ZENRing Rg;

Input: A ZENPoly P and an element root over a ZENRing Rg.
Output:
ZENERR if an error occured,

ZEN_NO_INVERSE if an inverse was impossible to compute,
ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: root contains a root of P
Note: Valid only in finite fields.




20 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT

Procedure 7 A root of a polynomial whose degree is equal to its number of
roots in finite fields of even characteristic.

int ZENPolyOneRootBerlekampEvenChar(root, P, Rg)
ZENE1lt root;
ZENPoly P;
ZENRing Rg;

Input: A ZENPoly P and an element root over a ZENRing Rg.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,
ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: root contains a root of P
Note: Valid only in finite fields.

Procedure 8 A root of a polynomial whose degree is equal to its number of
roots in finite fields of odd characteristic.

int ZENPolyOneRootBerlekampOddChar (root, P, Rg)
ZENE1lt root;
ZENPoly P;
ZENRing Rg;

Input: A ZENPoly P and an element root over a ZENRing Rg.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,
ZEN_HAS_INVERSE if the polynomial has one root.

Side effect: root contains a root of P
Note: Valid only in finite fields.

Procedure 9 d-roots in finite fields

int ZENE1tDRoot(R, d, A, Rg)
BigNumDigit d;
ZENE1t R, A;
ZENRing Rg;
Input: Two elements R and A of a finite field Rg.
Output: ZENERR if an error occurred, 0 if A is a d-root, 1 otherwise.

Side effect: R is filled with the d-root of A if 0 is returned.
Note: This procedure is valid only in finite fields.




2.2. POLYNOMIAL FACTORIZATION. 21

Procedure 10 Is a d-root in finite fields.

int ZENEltIsADRoot(d, A, Rg)
BigNumDigit d;
ZENELt A;
ZENRing Rg;

Input: An element A of a finite ring Rg.
Output: ZENERR if an error occurred, 1 if A is a d-root, 0 otherwise.
Note: This procedure is valid only in finite fields. The algorithm
uses an exponantiation.

2.2 Polynomial factorization.

All the following procedures to factorize a polynomial in GF(2") will return a
list of polynomials. After describing functions to manipulate such lists, we give
the procedure to factorize polynomials.

A list of polynomial is a pointer on a struct which contains a polynomial,
its multiplicity and a pointer on an other ceil of the list. We can append a
polynomial at the beginning of a list with Gf2PolyListAppendFirst or remove a
polynomial at the beginning of the list Gf2PolyListAppendFirst.

Procedure 11 Creating a list of polynomials.

void ZENPolyFactCreate(lfact, Rg)
ZENPolyFact 1lfact;
ZENRing Rg;

Input: A list of polynomials Ifact.
Side effect: Ifact is allocated

Procedure 12 Freeing a list of polynomials.

void ZENPolyFactFree(lfact, Rg)
ZENPolyFact lfact;
ZENRing Rg;

Input: A list of polynomials Ifact.
Side effect: Ifact is freed




22 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT

Procedure 13 Freeing a polynomial structure.

void ZENPolyListFree(list, Rg)
ZENPolyList list;
ZENRing Rg;

Input: A polynomial structure list.
Side effect: list is allocated

pointer to P.

Procedure 14 Insert a polynomial into a list.

int ZENPolyFactAppend(lfact, list, Rg)
ZENPolyFact 1lfact;
ZENPolyList list;
ZENRing Rg;

Input: A polynomial P and a multiplicity mult.
Side effect: (P, mult) is inserted in Ifact.

Procedure 15 Removing a polynomial of a list.

int ZENPolyFactRemove(list, 1fact, index, Rg)

ZENPolyList list;
ZENPolyFact 1lfact;
int index;
ZENRing Rg;

Input: A list Ifact and a pointer on a multiplicity p-mult and a

polynomial p_P.

Output: -7 if index is greater than the size of the list, 0 otherwise.
Side effect: The list is updated and xp_P, xp_-m are initialized if no error

occured.

Three main steps must be done to factorize a polynomial P:
e The square free step done by ZENPolySFFactor,
e The distict degree step done by ZENPolyDDFactor,

e The equal degree step done by ZENPolyEDFactor.



2.2. POLYNOMIAL FACTORIZATION. 23

Procedure 16 Factorization of a polynomial.

int ZENPolyFactor (1fact, P, Rg)
ZENPolyFact l1lfact;
ZENPoly P;
ZENRing Rg;

Input: A polynomial P to factorize.
Side effect: The factors of P are put in p_Ifact.
Note:

The square free factorization of a polynomial P(X) is a decomposition P =
P P}P} ... PF, with Pi,..., P, square free and (P;,P;) = 1. The following
algorithm is described in [4].

Procedure 17 Square free factorization of a polynomial.

int ZENPolySFFactor(lfact, P, Rg)
ZENPolyFact 1lfact;
ZENPoly P;
ZENRing Rg;

Input: A polynomial P to factorize.
Side effect: The factors are put in Ifact.

Once got a square free polynomial P(X), we split the polynomial P(X) in
polynomaials of distinct degrees. This is the distinct degree factorization step.
In fact, we get the factor of degree d of P(X) by ged(X2"" — X, P(X)). Each
factor is then completely factorized by ZENPolyEDFactor if the flag edf equals
to 1. This function stops once a factor is found if the flag of is set.

Procedure 18 Distinct degree factorization of a polynomial.

int ZENPolyDDFactor(lfact, P, Rg)
ZENPolyFact lfact;
ZENPoly P;
ZENRing Rg;

Input: A polynomial P to factorize.
Side effect: The factors are put in xp_Ifact.

To split a polynomial P(X) in factors of degree k, we use a algorithm due
to Thion Ly [6].



24 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT

Procedure 19 FEqual degree polynomial factorization.

int ZENPolyEDFactor(lfact, P, XgmodP, k, Rg)
ZENPolyFact 1lfact;
ZENE1t P, XgmodP;
int k;
ZENRing Rg;

Input: A polynomial P to factorize, a polynomial XqmodP equal to
X?" mod P(X), the degree k of the factors of P(X).
Side effect: The factors are put in xp_lfact.

The Thiong Ly’s algorithm first find a i such that TX? = X + ... + X?
is different than a constante modulo P(X) and then a j such that u(X)
Tr(T'TX?) is different than a constant modulo P(X). Finally ged(u(X), P(X)
is a non trivial factor of P(X).

Procedure 20 .

ZENPoly ZENPolyThiongLy(P, XgmodP, k, Rg)
ZENPoly P, XgmodP;
int k;
ZENRing Rg;

Input: A polynomial P to factorize, X*" mod P(X) and k, the de-
gree of the factors of P.
Output: A factor of P is returned.

Procedure 21 .

ZENPoly ZENPolyCamion(P, k, Rg)
ZENPoly P;
int k;
ZENRing Rg;

Input: A polynomial P to factorize in a finite field of odd charac-
teristic, X>" mod P(X) and k, the degree of the factors of
P.
Output: A factor of P is returned.

A recursive algorithm due to Shoop [?] computes traces of polynomial faster.



2.3. IRREDUCIBLE POLYNOMIALS. 25

Procedure 22 Computing Q(X)+Q(X)*" +...+Q(X)(2"(k—1)) mod P(X).

int ZENShoopTrace(T, Q, k, XqmodP, KRg)
ZENE1t T, Q, XqmodP;
int k;
ZENRing KRg;

Input: The polynomial Q, the modulo P, XqmodP=X2" mod P(X)
and the integer k.
Side effect: The trace is put in T.

2.3 Irreducible polynomials.

Procedure 23 Testing irreducibility of a polynomial

int ZENPolyIsNotIrreducible(PX,Rg)
ZENPoly PX;
ZENRing Rg;

Input: A polynomial PX defined over a finite ring Rg.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,

ZENPOLY_HAS_ZERO_ROOT if the polynomial has zero as
root,

ZENPOLY_HAS_ONE_ROOQOT if the polynomial has one as
root,

ZENPOLY_HAS_REPEATED_FACTORS if the polynomial
has repeated factors,

ZENPOLY_IS_.P_POWER if P(X) = g(X)P, with p the char-
acteristic of the ZENRing,

ZENPOLY_IS_IRREDUCIBLE if the polynomial is irre-
ducible,

ZENPOLY_IS_.COMPOSED otherwise.

Note: Valid only in finite fields. The Berlekamp’s algorithm is
used

2.3.1 Low-level irreducibility functions

Two algorithms are implemented to test irreducibility of a polynomial. DDF
algorithm depends a lot on the shape of the polynomial. Berlekamp’s algorithm



26 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT

is usually faster for small degree polynomials, and its behaviour is much more
regular. For this reason, Berlekamp’s algorithm is used in all the high level
functions of the library. It is up to the user to use _ZENPolylsNotlrreducible

with DDF or any other algorithm he might want to use.

Procedure 24 Testing irreducibility of a polynomial

Input:

Output:

Note:

int _ZENPolyIsNotIrreducible(P,Algo,R)
ZENPoly P;
int (*Algo) ___((ZENPoly, ZENRing));
ZENRing R;

A polynomial PX defined over a finite ring Rg, and a func-
tion pointer on the algorithm to use (Berlekamp and DDF
are available).

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,

ZENPOLY_HAS_ZERO_ROOT if the polynomial has zero as
root,

ZENPOLY_HAS_ONE_ROOQOT if the polynomial has one as
root,

ZENPOLY_HAS_REPEATED_FACTORS if the polynomial
has repeated factors,

ZENPOLY_IS_.P_POWER if P(X) = g(X)?, with p the char-
acteristic of the ZENRing,

ZENPOLY_IS_.IRREDUCIBLE if the polynomial is irre-
ducible,

ZENPOLY_S_COMPOSED otherwise.

This function performs what is usually called the ERF phase
(Elimination of Repeated Factors) of a polynomial factor-
ization. This is done before calling the indicated algorithm
to complete a DDF phase (Distinct-Degree Factorization).
All these operations stop as soon as the polynomial is found
composed. The complete factorization is therefore not done.




2.3. IRREDUCIBLE POLYNOMIALS. 27

Procedure 25 Distinct-Degree Factorization

int Berlekamp(P,R)
ZENPoly P;
ZENRing R;

Input: A ZENPoly defined over a ZENRing, that must have no re-
peated factors.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,

ZENPOLY_IS_IRREDUCIBLE if the polynomial is irre-
ducible,

ZENPOLY_IS_.COMPOSED otherwise.

Note: [description of the algorithm]. We add two tests to this al-
gorithm, which correspond to the first two iterations of DDF
algorithm. This gives the best results.

Procedure 26 Distinct-Degree Factorization

int DDF(P,R)
ZENPoly P;
ZENRing R;

Input: A ZENPoly defined over a ZENRing, that must have no re-
peated factors.
Output:

ZENERR if an error occured,
ZEN_NO_INVERSE if an inverse was impossible to compute,

ZENPOLY_IS_IRREDUCIBLE if the polynomial is irre-
ducible,

ZENPOLY_IS_COMPOSED otherwise.

Note: [description of the algorithm]

We wrote two functions to find irreducible polynomials.



28 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT

Procedure 27 Setting a polynomial to an irreducible random one

int ZENPolySetRandomIrreducible(P,deg,R)
ZENPoly P;
int deg;
ZENRing R;

Input: A polynomial, a degree, a ZENRing.
Output: ZENERR if an error occured, 0 otherwise
Side effect: The polynomial is set randomly to a monic polynomial of
given degree that is irreducible over R.
Note: This procedure may toke a while. It is valid only in finite
fields. The Berlekamp’s algorithm is used.

Procedure 28 Finding the smallest polynomial f(X) such that X¢ + f(X) is
an irreducible polynomial.

int ZENPolySetSmallestIrreducible(P,deg,R)
ZENPoly P;

int deg;
ZENRing R;

Input: A degree d and an allocated polynomial P of size at least d
of a ZENRing R.
Output: -1 if an error occured, 0 otherwise
Side effect: The polynomial is set to a polynomial of given degree that
is irreducible over R

Note: This procedure may take a while. It uses Berlekamp’s algo-
rithm.

Procedure 29 Finding a small random polynomial f(X) such that X¢ + f(X)
is an irreducible polynomial.

int ZENPolySetGoodIrreducible(P,deg,R)
ZENPoly P;
int deg;
ZENRing R;

Input: A degree d and an allocated polynomial P of size at least d
of a ZENRing R.

Output: -1 if an error occured, 0 otherwise
Side effect: The polynomial is set to a polynomial of given degree that
is irreducible over R

Note: This procedure may take a while. It uses Berlekamp’s algo-
rithm.




2.3. IRREDUCIBLE POLYNOMIALS. 29

Procedure 30 Setting a polynomial to an irreducible random one

int _ZENPolySetRandomIrreducible(P,deg,Algo,R)

ZENPoly P;
int deg;
int (*Algo) ___((ZENPoly, ZENRing));
ZENRing R;
Input: A polynomial, a degree, a ZENRing, and a function pointer

Output:
Side effect:

Note:

on the algorithm to use (Berlekamp and DDF are available:
see ZENPolylslrreducible).

ZENERR if an error occured, 0 otherwise

The polynomial is set randomly to a monic polynomial of
given degree that is irreducible over R
This procedure may take a while

Procedure 31 Finding the smallest polynomial f(X) such that X + f(X) is
an irreducible polynomial.

int _ZENPolySetSmallestIrreducible(P,deg,Algo,R)

ZENPoly P;
int deg;
int (*Algo) ___((ZENPoly, ZENRing));
ZENRing R;
Input: A degree d, an allocated polynomial P of size at least

Output:
Side effect:

Note:

d of a ZENRing R, and a function pointer on the al-
gorithm to use (Berlekamp and DDF are available: see
ZENPolylslrreducible).

-1 if an error occured, 0 otherwise

The polynomial is set to a polynomial of given degree that
is irreducible over R

This procedure may take a while.




30 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT

Procedure 32 Finding a small random polynomial f(X) such that X¢ + f(X)
is an irreducible polynomial.

int _ZENPolySetGoodIrreducible(P,deg,Algo,R)
ZENPoly P;
int deg;
int (xAlgo) ___((ZENPoly, ZENRing));
ZENRing R;

Input: A degree d, an allocated polynomial P of size at least
d of a ZENRing R, and a function pointer on the al-
gorithm to use (Berlekamp and DDF are available: see
ZENPolylslrreducible).

Output: -1 if an error occured, 0 otherwise
Side effect: The polynomial is set to a polynomial of given degree that

is trreducible over R

Note: This procedure may take a while.

2.4 Pseudo-prime integers.

For integers, only a pseudo primality test based on a Miller Rabin algorithm
was implemented.

Procedure 33 Miller Rabin test

int ZENMillerRabin(Rg, e)
ZENRing Rg;
BigNumDigit e;

Input: A finite ring Rg and a base e.
Output: ZENERR if an error occured, 1 if Rg is a strong finite field
in base e, 0 otherwise.
Note: The first integer which is a strong pseudo prime for e = 2,
3, 5, 7, and 11, but not a prime is larger than 2510'2

The number of bases used in the Miller-Rabin test can be adjusted in the
file psprime.c.

#ifndef NB_BASIS MILLER RABIN

# define NB_BASIS MILLER RABIN 39 maximal number is 39

#endif
int base[40];
base[0]=2; base[1]=3; base[2]=5; base[3]=7; base[4]=11;
base[5]=13;base[6]=17;base[7]=19;base[8]=23;base[9]=29;
base[10]=31;base[11]=37;base[12]=41;base[13]=43;base[14]=47;
base[15]=53;base[16]=59;base[17]=61;base[18]=67;base[19]=71;
base[20]=73; base[21]=79; base[22]=83; base[23]=89; base[24]=97;



2.4. PSEUDO-PRIME INTEGERS. 31

base[25]=101;base[26]1=103;base[27]1=107 ;base[28]=109;base[29]=113;
base[30]=127;base[31]=131;base[32]=137;base[33]=139;base[34]=149;
base[35]=151;base[36]=157;base[37]=163;base[38]=167;base[39]=173;

Procedure 34 Is it a pseudo finite field.

int ZENRingIsAPseudoFF (Rg)
ZENRing Rg;

Input: A finite ring Rg.
Output: ZENERR if an error occurred, 1 if Rg is a pseudo finite field,

0 otherwise.

Note: This procedure test if the definition ring is a finite field and
then, if necessary, if the definition polynomial is irreducible.
When Rg is a prime field, this procedure test if it is o field
with the Miller Rabin test applied to several basis. With 2,
3, 5,7, 11 and 13, the answer is exact for all n < 10'2

Procedure 35 Is an integer prime

int ZBNIsPrime(n,nl)
BigNum n;
BigNumLength nl;

Input: A BigNum and its length.
Output: ZENERR if an error occurs, 1 if the integer is pseudo-prime,
0 otherwise
Note: The test uses ZENRinglsAPseudoFF

Procedure 36 Find the prime immediatly following

int ZBNNextPrime(pm,pnl)
BigNum *p_n;
BigNumLength *p_nl;

Input: A pointer to an allocated BigNum and a pointer to its length.
Output: ZENERR if an error occurs, the number of steps performed
otherwise
Side effect: The BigNum is modified accordingly. If a reallocation is
needed, it is performed after freeing the initial BigNum.
Note: The test uses ZBNIsPrime. If the number is already prime,
it is unchanged.




32 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT

2.5 Finite field construction

We provide high-level functions to easily build a representation of any finite field.
This representation is not always the most efficient, but compromise should be
good enough for most purposes.

Procedure 37 Generating a finite field

Input:

Output:
Side effect:

Note:

int ZENFieldAlloc(R,q,ql,d)
ZENRing R;
BigNum q;
BigNumLength ql;
int d;

A ZENRing to build, a number (q,ql) and the degree d of the
extension.

ZENErr if an error occured, 0 otherwise.

The ZENRing

R=Z/pzlXl/ p(x)

is built using an irreducible polynomial of degree d generated
by ZENPolySetGoodIrreducible. The prime p is the smallest
prime greater or equal than (q,ql).

No precomputation is done. If d< 2 the built field is
R = Z/,7. The base ring is cloned, in order to improve
efficiency, using ZENCInSetAll and ZENRingClone. The ex-
tension is cloned in the same way. The obtained structure
can be freed using ZENRingFullClose.

Procedure 38 Generating interactively a finite ring

Input:
Output:

Side effect:

Note:

ZENRing ZENRingDefine (IN,QUT)
FILE *IN,*0UT;

Two file descriptors that can be stdin and stdout.
ZENNULL if an unrecoverable error occured or the newly
defined ZENRing.

All the possible clonings are performed, but no precomputa-
tion is done.

If OUT is set to NULL, the interactive questions are not
output.




2.5. FINITE FIELD CONSTRUCTION 33

Procedure 39 Precomputing.

int ZENRingRecursiveAddPrc(R, prc)
ZENRing R;
ZENPrc prc;

Input: A finite ring Rg and precomputations Prc.
Output: ZENERR if an error occured, ZEN_NO_INVERSE if a factor
of a modulo was discovered, ZEN_HAS_INVERSE otherwise.
Side effect: Precomputations asked in the flags of Prc are done in order
to speed up the corresponding procedures. ZENRingFact(Rg)
18 filled with a factor of a modulo if ZEN_NO_INVERSE is
returned. These precomputations are done recursively for
all the underlying ZENRings. If a clone is encountered, pre-
computations are added to the clone, not to the original ring,
because its operations are not used.
Note: Precomputations can take time. .. This function can be used
for instance on the output of a _ZENRingDefine call.

Procedure 40 Suppressing precomputations.

void ZENRingRecursiveRmPrc(R, prc)
ZENRing R;
ZENPrc prc;

Input: A finite ring Rg and precomputations Prc.
Side effect: Structures already allocated by ZENRingRecursiveAddPrc()
are disallocated.

Procedure 41 Writing to file in a human comprehensive representation.

int ZENRingPrintDebug(file, Rg)
FILE xfile;
ZENRing Rg;

Input: A stream file, the level of ring, an allocated ZENRing Rg.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: Printing a representation of Rg to file.

Procedure 42 Printing to stderr.

int ZRP(R)
ZENRing R;

Input: An allocated ZENRing.
Output: ZENERR if an error occured, 0 otherwise.
Side effect: Printing a representation of R to stderr.




34 CHAPTER 2. ENUMERATING THE FUNCTIONS OF ZENFACT



Appendix A

Bibliography

[1] F. Chabaud, Recherche de performance dans les corps finis — Applications
a la crypotgraphie Thése de doctorat, Ecole Polytechnique, octobre 1996.
http://www.dmi.ens.fr/"chabaud/data/these.ps.gz

[2] F. Chabaud, and R. Lercier, Representations of GF(2") — An example
using ZEN library,
http://lix.polytechnique.fr/~zen/example.html

[3] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem and J. Van-
dewalle. A fast software implementation for arithmetic operations in Fan,
Advances in cryptology, ASIACRYPT’96, Springer-Verlag, LNCS 1163, 65—
76, 1996.

[4] K. Geddes, S. Czapor, and G. Labahn

[5] Rudolf Lidl, and Harald Niederreiter. Finite fields. Encyclopedia of math-
ematics and its applications. Addison-Wesley Publising Company, 1983.

[6] A.Thiong ly. A deterministic algorithm for factorizing polynomials over
extensions GF(p™) of GF(p), p a small prime. J. of Information & Opti-
mization Sciences, Vol. 10(2): 337-344, 1989.

35



36

APPENDIX A. BIBLIOGRAPHY



Appendix B

Concepts index

TestComputation(R), 6
ZRP(R), 33

big integers
prime
assignation, 31
test, 31

elements
root
ZENEItDRoot(R, d, A, Rg), 20
ZENEItIsADRoot(d, A, Rg), 21

ﬁelds, see rings
freeing memory
ZENFieldAlloc(R,q.ql.d), 32

polynomials
ZENPolyListFree(list, Rg), 22
factorization
ZENPolyCamion(P, k, Rg), 24
ZENPolyDDFactor(lfact, P, Rg),
23
ZENPolyEDFactor(Ifact, P, Xq-
modP, k, Rg), 24
ZENPolyFactAppend(Ifact, list,
Rg), 22
ZENPolyFactCreate(Ifact, Rg),
21
ZENPolyFactFree(Ifact, Rg), 21
ZENPolyFactRemove(list, Ifact,
index, Rg), 22
ZENPolyFactor(Ifact, P, Rg),
23
ZENPolySFFactor(Ifact, P, Rg),
23

37

ZENPolyThiongLy(P, XqmodP,
k, Rg), 24
irreducible
assignation, 28-30
test, 2527
root
ZENPolyOneRootBerlekampEven-
Char(root, P, Rg), 20
ZENPolyOneRootBerlekampOd-
dChar(root, P, Rg), 20
ZENPolyOneRootEDF(root, P,
Rg), 19
ZENPolyRoots(roots, P, Rg),
17
ZENPolyRootsBerlekampEven-
Char(roots, P, Rg), 18
ZENPolyRootsBerlekampOdd-
Char(roots, P, Rg), 19
ZENPolyRootsEDF(roots, P, Rg),
18
trace
ZENShoopTrace(T, Q, k, Xqg-
modP, KRg), 25
prime
test
ZENMillerRabin(Rg, €), 30

rings

ZENRingDefine(IN,0UT), 32

ZENRingRecursiveAddPrc(R, prc),
33

ZENRingRecursiveRmPrc(R, prc),
33

input/output

ZENRingPrintDebug(file, Rg),

33



38

test

ZENRinglsAPseudoFF(Rg), 31

APPENDIX B. CONCEPTS INDEX



