ZMAKE

Another way to handle compilation on
various systems

User’s manual

F. Chabaud
fchabaud®free.fr
R. Lercier
lercier@celar.fr

DCSSI
18 rue du Dr. Zamenhoff
92131 Issy-les-Moulinaux
France

Centre d’Electronique de I’Armement
CASSI/SCY/EC

35998 Rennes Armées

France

December 2, 2004

Contents

1 Introduction
2 Makefiles are not portable

3 Writing zmake.c files
3.1 [Imitialization
3.2 Handling targets
3.3 Handlingpaths
34 Processingfiles
3.5 Removingfiles

4 The documentation parser
5 A zmake.c example

6 Bibliography

11
11
12
12
13
17

19

21

25

CONTENTS

Chapter 1

Introduction

In [3], it is stated that

“In the UNIX world, software development typically involves make,
using a Makefile describing how to build and install the programs in
which we’re interested. In essence, make functions as a command-
generating engine, and the Makefile controls which command to gen-
erate for specific targets. This is a tremendous convenience for the
programmer, since it eliminates the need to type out a bunch of
commands each time you want to build something.

Unfortunately, Makefiles are not portable. The commands that make
so conveniently generates at the drop of a hat are subject to variation
from system to system, so a Makefile that works on my system may
not work on yours. Ideally, we’d be able to take a software project,
put it on another machine, compile and install it, and it would run.
But it doesn’t always work that way.”

This point of view is developed in details in section 2.

Two alternatives are known to avoid such troubles, the first one was devel-
oped for X-WINDOWS, it is called imake. The second one was developed by
the GNU community, it is called configure.

Imake : With this solution, you don’t write a Makefile, instead you write an
imakefile, a machine independent description of the targets you want to
build. Static machine dependencies are centralized into a set of config-
uration files isolated in their own directory, config, so they don’t appear
in the imakefile. The program imake merges information obtained from
config and imakefile to generates a properly configured Makefile. Then you
run make to build your programs.

From a practical point of few, imake is just an interface for the preprocessor
cpp. In a first approximation, the Makefile that imake generates, would be
more or less the file obtained with cpp -I. -Iconfig config/Imake.tmpl Makefile.
cpp usually defines specific variables for each machine and these variables
are tested in Imake.templ to include the corresponding files of config. Then
Imake.templ includes the current imakefile.

6 CHAPTER 1. INTRODUCTION

Configure : This solution generates Makefiles from a machine independent de-
scription of the targets you want to build and from machine dependencies
dynamically collected at the compilation stage.

From a practical point of few, configure is just a Bourne Script Shell which
performs some tests in order to determine the way how the software must
be compiled.

In ZMAKE, we tried to get the best of these two approaches. In fact, the
strong assumptions we made in our design is that the only thing we can assume
about the target system is that it has a C-compiler and that it supports POSIX
system calls. Most of the OS we heard about verify this ! So, external tools like
imake, sh, make, ...are no more needed.

The way how a software must be compiled is no more specified in a a Makefile,
an Imakefile or a configure script shells. It is simply specified in files written in
C. These files are typically called zmake.c. Thus, the challenge that we had to
face while developing ZMAKE was to give developers APIs which can be easily
used. Like this, we expect to have zmake.c files easy to understand. That’s why
these APIS are very similar to Makefile targets. These APIS are described in
section 3.

In order to have a documentation as close as possible to the C implementa-
tion, we used to interlace documentation and C code. This is done thanks to a
specific parser called zparse, This parser is described in section 4.

Finally, a small example, the C file zmake.c which compiles this documenta-
tion is given in section 5.

Remark : Except the original way we process the LaTeX [4] documentation, this
work about portable compilation and version control of sources with CVS [1]
inherit in parts from the programming environment work used by the LiPS
project [2].

Chapter 2

Makefiles are not portable

All this can be found in [3].

Suppose we’re writing a small C program, myname consisting of a single
source file myname.c:

#include <stdio.h>

int main()

{

char *getenv();
char *p;

p = getenv ("USER");
if (p == (char *)NULL) {
printf("Cannot tell your user name\n");

}

else {
printf("Your user name is %s\n", p);

}

exit (0);

The Makefile for the program might look like this:

myname: myname.o
cC -0 myname myname.o
install: myname
install myname /usr/local

7

8 CHAPTER 2. MAKEFILES ARE NOT PORTABLE

To build and install myname, we’d use these commands:

% make myname

cc -c myname.c

cc -0 myname myname.o

% make install

install myname /usr/local

All our friends are astonished at the use fullness of this program and imme-
diately begin asking us for the source code. We give it to one of them, together
with the Makefile, and he lopes off to install it on his machine. The next day
he sends back the following report:

e We don’t have any install program, so I used cp.
e Our local installation directory is /usr/local/bin rather than /usr/local.

He sends back a revised Makefile, having made the necessary changes, and
also having conveniently parameterized the things he found to be different on
his system, using the make variables INSTALL and BINDIR at the beginning of
the Makefile:

INSTALL = cp
BINDIR = /usr/local/bin
myname: myname.o
CC -0 myname myname.o
install: myname
install myname /usr/local

This is a step forward. The installation program and directory as specified
in this Makefile are no longer correct for our machine, but now they’re param-
eterized and thus easily located and modified. We change the values back to
install and /usr/local/bin/ so they’ll work on our machine, and both we and our
friend are happy.

Alas, our idyllic state of mind doesn’t last long. We give the program to
another friend. She builds it and reports back her changes:

o I prefer to use gcc, not cc.

e Our C library is broken and doesn’t contain getenv(), I have to link in
-lc_aux as well.

e The environment variable USER isn’t used on our system, but LOGNAME
is, so I used that instead.

She, too, sends back a revised Makefile, further parameterized:

CC = gcc
EXTRA_LIBS = -lc_aux
CFLAGS = -DUSE_LOGNAME
INSTALL = cp
BINDIR = /usr/local/bin
myname: myname.o
$(CC) $(CFALGS) $(EXTRALIBS) -o myname myname.o
install: myname
install myname /usr/local

and a revised file myname.c:

#include <stdio.h>

int main()
char *getenv();
char *p;

#ifdef USE_LOGNAME
p = getenv ("LOGNAME");
#else
p = getenv ("USER");
#endif
if (p == (char *)NULL) {
printf("Cannot tell your user name\n");
}
else {
printf ("Your user name is %s\n", p);
}
exit (0);

}

Now, with a simple change to the Makefile, myname can be recompiled on
machines that use either environment variable. This is encouraging. Using
our vast and ever increasing porting experience, myname now works on more
machines-three ! And the revised Makefile is better than the original:

e It parameterizes all the non portability we’ve encountered so far.
e Nonportabilities are identified explicitly at the beginning of the Makefile.
e They're easily modified by editing Makefile.

However, we begin to notice uneasily that the number of things that might
need changing from machine to machine is increasing. They were only two
differences between machines when we built myname on two systems. Now we

10 CHAPTER 2. MAKEFILES ARE NOT PORTABLE

can build it on three systems but the number of differences has increased to
five. How many differences will we find when we attempt to port myname to
additional systems ? As the Makefile editing job gets bigger, it becomes more
difficult. Each nonportability adds another increment to the burden incurred
each time myname is built on a different machine.

Also, we’d better keep a list of parameters appropriate for each type of
machine on which the program is known to run, or we’ll forget them. And we
need to distribute the list to other people who want to build the program, so
they can consult it to see how they might need to modify the makefile on their
systems.

The previous example outlines mainly four drawbacks of make:

e There are no conditionals:
If we could assign values to make variables conditionally, we could param-
eterize machine dependencies by assigning variable values appropriate to
a given machine type. To some extend, we can use the shell’s if-statement
syntax to get around lack of conditionals in target entries, but it’s clunky
to do so.

e There is no flow control:
Loops and iterators must be done using shell commands to simulate them.

e It’s difficult to make global changes:

For example, suppose you use BINDIR to name your installation direc-
tory. You can assign it the proper value in each Makefile in your project.
But if you decide to change it, you must find and change every Makefile.
Alternatively, you can assign BINDIR, once in the top level Makefile and
pass the value to make commands in subdirectories using suitable recur-
sive rules. But, then you can’t run make directly in a subdirectory because
BINDIR won’t have the proper value. Recursive rules are difficult to write
correctly, anyway.

e Header file dependencies for C source files are inherently nonportable:
Different systems organize header files differently. You might even have
multiply sets on systems that support development under more than one
environment (BSD, System V, ...). This makes it impossible to list header
file dependencies statically in the Makefile. They must be computed on
the target machine at build time.

Chapter 3

Writing zmake.c files

Basically, a zmake command is the compilation of a zmake.c C file which contains
a single main() procedure calling few zmake API. These API are described here.

3.1 Initialization

Procedure 1 Initialization of a zmake.

void zmake_init(DEFINES, INCLUDES, LOCAL_LDFLAGS, LOCAL_LIBRARY,
argc, argv)

char
char
char
char

*DEFINES;
*INCLUDES;
*LOCAL_LDFLAGS;
*LOCAL_LIBRARY;

int argc;

char

xargv[];

Input: Standard defines DEFINES, standard includes INCLUDES,

standard link flags LOCAL_LDFLAGS and standard libraries
LOCAL_LIBRARY to use for any compilation and the well
known argc and argv C arguments.

Side effect: If a statement verbose=100 is set on the command line, de-

bugging output is done while procesing ZMAKE functions.
Moreover, this function checks that any needed file for the
compilation of zmake is older than zmake, otherwise recom-
pilation of zmake is performed.

11

12 CHAPTER 3. WRITING ZMAKE.C FILES

Procedure 2 Ending o zmake.

void zmake_close()

Side effect: An exit(0) is performed.

3.2 Handling targets

Procedure 3 Is a target specified on the command line.

int Target(target, argc, argv)
char *target;
int argc;
char *argv[];

Input: A target target and the well known C arguments argc and
argv.
Output: 1 if target was specified on the command line, 0 otherwise.

Procedure 4 Target implications.

void TargetImply(target, subtargets)
int target;
int subtargets;

Input: A target target and subtargets subtargers.
Side effect: Subtargets are set to one if target is non NULL.

3.3 Handling paths

Procedure 5 Concatening 2 strings.

char *concat(sl, s2)
char *sl1; char *s2;

Input: Two strings sl and s2 to concatenate.
Output: An allocated strings which contains the concatenation of sl
and s2.

3.4. PROCESSING FILES 13

Procedure 6 Appending a string to another.

void append(sl, s2)
char **sl1; char *s2;

Input: A string s2 to append to sl.
Side effect: The string sl contains the concatenation of s1 and s2.

3.4 Processing files

Procedure 7 Recursively compiling and calling zmake command in directories.

void NamedTargetSubdirs(target,dirs,subtarget,argc, argv)
int target;
char *dirs, *subtarget;
int argc; char *argv([];

Input: A target target, the list of directories dirs containing zmake.c
files, targets subtargets which will be arguments for zmake
called in these directories and the well known argc and argv
C arguments.

Side effect: If target is non zero, in each directory dirs, zmake is compiled
if this was not already done. The resulting zmake are called
with target subtarget.

Note: If the calling zmake was just (re)compiled, the binaries
zmake in the directories are automatically (re)compiled.

Procedure 8 Cualling lex on source files to obtain C files.

int LexToSrcs(target, odir, cprefix, ydir, yprefix, yfiles,
includes, flags)
int target;
char *odir; char *cprefix;
char *ydir; char *yprefix; char *yfiles;
char *includes; char *flags;

Input: A target target, the directory odir which will receive the ob-

tained C files, a prefix cprefix which will be added to these

C files, the directory ydir which contains the lex files, the

prefix yprefix of these lex files, the names yfiles of these lex

files (without the usual suffix 1), directories includes which

must be included and specific flags flags to add to lex.

Output: The integer 1 if an error occured, 0 otherwise.
Side effect: C files are created in odir if target is non zero.

14 CHAPTER 3. WRITING ZMAKE.C FILES

Procedure 9 Calling yacc on source files to obtain C files.

int YaccToSrcs(target, odir, cprefix, ydir, yprefix, yfiles,
includes, flags)
int target;
char *odir; char *cprefix;
char *ydir; char *yprefix; char *yfiles;
char *includes; char *flags;

Input: A target target, the directory odir which will receive the ob-
tained C files, a prefix cprefix which will be added to these C
files, the directory ydir which contains the yacc files, the pre-
fix yprefix of these yacc files, the names yfiles of these yacc
files (without the usual suffix .y), directories includes which
must be included and specific flags flags to add to yacc.

Output: The integer 1 if an error occured, 0 otherwise.
Side effect: C files are created in odir if target is non zero.

Procedure 10 Compiling C files to obtain object files.

int SrcToObjects(target, odir, oprefix, cdir, cprefix, cfiles,
includes, cflags)
int target;
char *odir; char *oprefix;
char *cdir; char *cprefix; char *cfiles;
char *includes; char *cflags;

Input: A target target, the directory odir which will receive the ob-
tained object files, a prefiz oprefix which will be added to
these object files, the directory cdir which contains the C
files, the prefix cprefix of these C files, the names cfiles of
these C files (without the usual suffix .c), directories includes
which must be included and specific flags cflags to add to cc.
Output: The integer 1 if an error occured, 0 otherwise.
Side effect: Object files are created in cdirs if target is non zero.

3.4. PROCESSING FILES 15

Procedure 11 Archiving object files in a list file.

int ObjectsToArList(target, libdir, lprefix, lib, objtoar,
odir, rprefix, ofiles)
int target;
char *1libdir; char *lprefix; char *1ib; char *objtoar;
char *odir; char *rprefix; char *ofiles;

Input: A target target, the directory libdir which will receive the list
file, a prefix |prefix which will be added to list file, the name
lib of the obtained list file, the suffix objtoar of this list, the
directory odir which contains the object files, the prefix rprefix
of these object files and the names ofiles of these object files
(without the usual suffix .0).

Output: The integer 1 if an error occured, 0 otherwise.
Side effect: The list file is created in libdir if target is non zero.

Procedure 12 Creating an executable program from object files.

int ObjectsToBinary(target, bdir, bprefix, bfile, odir, oprefix, ofiles,
ldflags, 1dlibs)
int target;
char *bdir; char *bprefix; char *bfile;
char *odir; char *oprefix; char *ofiles;
char *1dflags; char *1dlibs;

Input: A target target, the directory bdir which will receive the ez-
ecutable program bfile, a prefix bprefix which will be added
to this binary, the name bfile of this binary, the directory
odir which contains the object files, the names ofiles of these
object files (without the usual suffiz .0), the flags needed for
cc and the library to link with.

Output: The integer 1 if an error occured, 0 otherwise.
Side effect: The binary is created in bdir if target is non zero.

16

CHAPTER 3. WRITING ZMAKE.C FILES

Procedure 13 Adding object files to a library.

int ArListToLibrary(target, 1ldir, lprefix, lname, lsuf,
mdir, mprefix, mname, msuf, ddir, dprefix, dname, dsuf)
int target;

char *1dir; char *lprefix; char *lname; char *lsuf;
char *mdir; char *mprefix; char *mname; char *msuf;
char *ddir; char *dprefix; char *dname; char *dsuf;

Input:

Output:
Side effect:

A target target, the directory Idir which contains the library,
o prefix lprefix, the name Iname and the suffix Isuf of the
library, the directory mdir, prefix mprefix, name mname and
suffix msuf of a temporary file and the directory ddir, prefix
dprefix, name dname and suffix dsuf of a list file obtained
with ObjectsToArList.

The integer 1 if an error occured, 0 otherwise.

The tex files are compiled if target is non zero.

Procedure 14 Parsing C files to obtain LaTeX documentation.

int SrcToTex(target, tdir, tprefix, cdir, cprefix, cfiles, csuf,
fdir, fprefix, pdir, filter)

int target;

char *tdir; char *tprefix;
char *cdir; char *cprefix; char *cfiles; char *csuf;
char *fdir; char *fprefix; char *pdir; char *filter;

Input:

Output:
Side effect:

A target target, the directory tdir which will receive the
LaTeX files, a prefix tprefix which will be added to this LaTeX
files, the directory cdir which contains the C files, the pre-
fix cprefix of these C files, the names cfiles of these C files
(without the usual suffiz ”.c”), the suffiz csuf of these C files
(usually .c or .h), the directory fdir which will contain the
compiled parser, the prefix fprefix of this parser, the direc-
tory pdir which contains the sources of the parser and the
name filter of the parser.

The integer 1 if an error occured, 0 otherwise.

The parser is compiled and the LaTeX files are created if
target is non zero.

3.5. REMOVING FILES 17

Procedure 15 Compiling LaTeX files to obtain dvi documentation.

int TexToDvi(target, ddir, dprefix, tdir, tprefix, tfiles, inputs)
int target;
char *ddir; char *dprefix;
char *tdir; char *tprefix; char *tfiles;
char *inputs;

Input: A target target, the directory ddir which will receive the dvi
files, a prefix dprefix which will be added to this dvi files,
the directory tdir which contains the LaTeX files, the prefix
tprefix of these LaTeX files, the names tfiles of these LaTeX
files (without the usual suffiz .tex) and directories inputs
where style LaTeX files can be found.

Output: The integer 1 if an error occured, 0 otherwise.
Side effect: The LaTeX files are compiled if target is non zero.

3.5 Removing files

Procedure 16 Removing files

void CleaningRules(target, path, prefix, files, suffix)
int target;
char x*path;
char *prefix;
char *files;
char *suffix;

Input: A target target, the directory path which contains files to
remove, a prefix prefix of the files to remove, the names files
of to remove, the suffiz suffix of the files to remove.

Output: The integer 1 if an error occured, 0 otherwise.
Side effect: The files prefix-names-suffix are removed from path. If path
is empty once these files are removed, path is remowved too.

Procedure 17 Removing directories

void TidyingRules(target, path)
int target;
char *path;

Input: A target target, the directory path which contains files to
remove.
Output: The integer 1 if an error occured, 0 otherwise.
Side effect: The directory and the files contained in this directory are
removed.

18

CHAPTER 3. WRITING ZMAKE.C FILES

Chapter 4

The documentation parser

This program builds LaTeX documentation source from the C files comments.
A few commands are used to perform clean output using zen.sty file. These
commands are only valid inside a C-comment:

o \TEX{ZeNTeX} allows to include LaTeX code in the resulting file as is. It
is also intended to enumerate the procedures of the C files. To include a
procedure in the LaTeX file, there are fields that should be used to describe
the function, all but the first of which are optional.

1. \title should shortly describe the function. This field is needed but
can be set to —.

2. \input should describe the parameters of the function.

3. \output should describe the output of the function.

4. \side should describe the side effects of the procedure.

5. \note allows to precise some programming features.
Besides, as soon as a \title{} appears in a \ TEX comment, the C-header of
the following function is included and index entries for Makelndex program

are generated. This feature is disabled by the -noindex option in the
command line.

e \TEX[ZeNTeX} behaves in the same way, except that short descriptions
of the functions are included.

e \CiteC makes the C source to be included in verbatim mode in the LaTeX
code.

e \EndCiteC ends the citation of C source.

e Pipes symbols | may delimit the programs names and declarations. Within
pipes, the underscore symbols _ are automatically backslashed (\-) the
stars x transformed in \star and the backslash \ transformed in \backslash.

19

20 CHAPTER 4. THE DOCUMENTATION PARSER

Note 1 By default, the output format of LaTeX is set to adpaper. It is possible
to use default legal format by modifying the following compilation directive in
file zmake/zparse.h.

#define A4PAPER 1

Chapter 5

A

zmake.c example

This example is the zmake.c source used to compile this documentation.

#include "zmake.h"

At first, global variables containing main paths and files are defined.

char
char
char
char
char
char
char
char

*DOC_RO0OT = "doc";

*DOC_FILES = "intro title compile biblio zmake";
*ZMAKE DOC_FILES = "ztools zrules zmake";

*ZMAKE DOC_HFILES = "zmake";

*PARSER = "zparse";

*IPT = ".";
*TEX = "tex";
*DVI = "dvi";

The heart of a zmake.c is this procedure.

int main(argc, argv)

int argc;
char *argv[];

We will need these variables.

char *LOCAL_TOP
char *LOCAL_BIN

TOPDIR;
concat (LOCAL TOP, concat("/", CompilingDir));

char *LOCAL_TEX = concat(LOCAL_TOP, concat("/", TEX));
char *LOCALDVI = concat(LOCAL_TOP, concat("/", DVI));
char *LOCAL_IPT = LOCAL_TOP;

char *LOCAL_INPUTS;

Then, Makefiles target are simulated as follows.

int cc = 0;
int prgmOlink = 0; int prgmllink = 0; int prgm2link = 0;

21

22

CHAPTER 5. A ZMAKE.C EXAMPLE

int ludvi = O;
int clean.obj = 0; int clean_lib = 0; int clean_bin

nou
o o

int clean.doc = 0; int clean_tex = 0; int clean_dvi
int tidy-1lib = 0; int tidy_obj = 0; int tidy_bin = O;
int tidy.-doc = 0;

Targets which can be called from the command line are defined here.
int all = Target("all", argc, argv);

int ar = Target("ar", argc, argv);

int prgm0 = Target("test", argc, argv);

int prgml = Target("bench", argc, argv);
int prgm2 = Target("example", argc, argv);

int doc = Target("doc", argc, argv);
int tex = Target("tex", argc, argv);
int dvi = Target("dvi", argc, argv);

int archtidy = Target("archtidy", argc, argv);
int archclean = Target("archclean", argc, argv);
int clean = Target("clean", argc, argv);

int tidy = Target("tidy", argc, argv);

int none = Target("none", argc, argv);

Afterwards, ZMAKE initialisation is done here.

LOCAL_INPUTS = concat(concat (CURDIR, ":"), IPT);
LOCAL_INPUTS concat (concat (LOCAL_INPUTS, ":"), LOCAL_TEX);

Zmake_init("" , nn , nn , nn , argc’ argv) ;

And pseudo makefiles targets can be handled as follows.

TargetImply(defaults, all);
TargetImply(all, doc);

TargetImply(doc, tex=ludvi);
TargetImply(dvi, tex=ludvi);

SrcToTex(tex,
LOCAL_TEX, "",
LOCAL_IPT, "", DOC_FILES, CSUF,
LOCAL BIN, "", LOCAL_IPT, PARSER);

SrcToTex(tex,

LOCAL_TEX, "",

ZMAKE DIR, "", ZMAKE_DOC_FILES, CSUF,

LOCAL_BIN, "", LOCAL_IPT, PARSER);
SrcToTex(tex,

LOCAL_TEX, "h",

ZMAKE DIR, "", ZMAKE_DOC_HFILES, HSUF,

LOCAL BIN, "", LOCAL_IPT, PARSER);
SrcToTex(tex,

LOCAL_TEX, "",

ZMAKE DIR, "", PARSER, HSUF,

LOCALBIN, "", LOCAL_IPT, PARSER);
SrcToTex(tex,

LOCAL_TEX, "",

LOCAL_IPT, "", DOC_ROOT, CSUF,

LOCAL_BIN, "", LOCAL_IPT, PARSER);

TexToDvi(dvi,
LOCAL DVI, "",
LOCAL_TEX, "", ZMAKE DOC_FILES,
LOCAL_INPUTS) ;

TexToDvi(dvi,
LOCALDVI, "h",
LOCAL_TEX, "h", ZMAKE DOC_HFILES,
LOCAL_INPUTS) ;

TexToDvi(dvi,
LOCAL DVI, "™,
LOCAL_TEX, "", DOC_FILES,
LOCAL_INPUTS) ;

TexToDvi(dvi,
LOCALDVI, "",
LOCAL_TEX, "", PARSER,
LOCAL_INPUTS) ;

TexToDvi(ludvi,
LOCAL DVI, "",
LOCAL_TEX, "", DOC_ROOT,
LOCAL_INPUTS) ;

Cleaning rules are defined here.

TargetImply(tidy, tidy_bin=tidy._doc);
TargetImply(archtidy, clean doc=clean bin);
TargetImply(clean, clean_tex);
TargetImply(archclean, clean tex);
TargetImply(clean doc, clean dvi=clean tex);

CleaningRules(clean tex, LOCAL_TEX, "", PARSER, ".tex");

CleaningRules(clean tex, LOCAL_TEX, "", ZMAKE DOC FILES, "

23

.tex");

24 CHAPTER 5. A ZMAKE.C EXAMPLE

CleaningRules(clean tex, LOCAL_TEX,
CleaningRules(clean tex, LOCAL_TEX,
CleaningRules(clean tex, LOCAL_TEX,

CleaningRules(cleandvi, LOCALDVI,
CleaningRules(cleandvi, LOCALDVI,
CleaningRules(clean dvi, LOCAL DVI,
CleaningRules(clean dvi, LOCAL DVI,
CleaningRules(clean dvi, LOCAL DVI,

TidyingRules(tidy bin, LOCAL_BIN);

TidyingRules(tidy doc, LOCAL_TEX);
TidyingRules(tidy doc, LOCAL DVI);

Exit is finally done here.

zmake_close() ;

exit (0);

"h", ZMAKE_DOC_HFILES, ".tex");

nn
I’

, DOC_FILES, ".tex");
, DOC_ROOT, ".tex");

ZMAKE DOC_FILES, ".dvi");

"h", ZMAKE DOC_FILES, ".dvi");

, DOC_FILES, ".dvi");
, PARSER, ".dvi");
, DOC_ROOT, ".dvi");

Chapter 6
Bibliography

[1] D. Grune, B. Berliner, and J. Polk. Concurrent Versions System.

[2] T. Setz. Integration von mechanismen zur unterstitzung der fehlertoleranz
in LiPS, PhD thesis, Universitt des Saarlandes, Saarbriicken, Germany,
Jan. 1996.

[3] P. DuBois. Software portability with imake, O’Reilly & Associates, 1993.

[4] L. Lamport. LaTeX A documentation preparation system, Second edition,
Addison-Wesley, 1994.

25

26

CHAPTER 6. BIBLIOGRAPHY

Chapter 7

Concepts index

ArListToLibrary(target, Idir, lprefix, Iname,
Isuf,, 16

CleaningRules(target, path, prefix, files,
suffix), 17

LexToSrcs(target, odir, cprefix, ydir,
yprefix, yfiles,, 13

NamedTargetSubdirs(target,dirs,subtarget,argc,
argv), 13

ObjectsToArList(target, libdir, Iprefix,
lib, objtoar,, 15

ObjectsToBinary(target, bdir, bprefix,
bfile, odir, oprefix, ofiles,, 15

SrcToObjects(target, odir, oprefix, cdir,
cprefix, cfiles,, 14

SrcToTex(target, tdir, tprefix, cdir, cpre-
fix, cfiles, csuf,, 16

Target(target, argc, argv), 12

Targetimply(target, subtargets), 12

TexToDvi(target, ddir, dprefix, tdir,
tprefix, tfiles, inputs), 17

TidyingRules(target, path), 17

YaccToSrcs(target, odir, cprefix, ydir,
yprefix, yfiles,, 14

append(sl, s2), 13

concat(sl, s2), 12

zmake_close(), 12

zmake_init(DEFINES, INCLUDES, LO-
CAL_LDFLAGS, LOCAL_LIBRARY,,
11

27

